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Seconder School Mathematics Curriculum Im rovement Stud

Course II - Teacher Commentary

HOW TO USE THIS COMMENTARY

1. Purposes. At the start of the commentary for each chapter,

the overall purposes and goals for the chapter are stated.

Often, specific sections within the chapter are identified

here as they would relate to each purpose stated. Similarly,

the commentary for every section within the chapter will

begin with a statement of specific purposes.

2. Sections. There are two basic types of sections within

each chapter. One type presents concepts; the second

type consists of exercises. The sections have been ordered

so that a section (or sometimes two sections) of exposition

is followed by a section of related exercises. Within

various sections, the teacher will find: possible moti-

vational devices; a variety of approaches; notations rela-

tive to difficult exercises; suggestions for placement of

exercises as class work; homework or self-study; hints

regarding difficulties that may occur; new vocabulary

underscored; and some abstract background for the teacher.

3. Time Estimates. In terms of days, a time estimate will

be found at the beginning of each chapter commentary.

This is the estimate for the chapter; it. is.based upon.
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individual time estimates for sections within the chapter.

Time estimates are given only to those sections containing

some form of exposition. It is assumed that each exercise

section is to be grouped with the concept section immedi-

ately preceding it relative to time estimations.

The teacher should note that Chapter 11 is not to be

included as part of Course II. Also, the teacher should

feel free to assign Appendix A as a self-study unit, and

pace his teaching so that emphasis is placed on the chap-

ters 1 to 10.

4, Exercises. Certain exercises have proved to be more suc-

cessful when discussed within the actual lesson rather

than assigned as homework. Suggestions regarding the

placement of exercises appear at various points within

the commentary.

The teacher need not hold rigidly to the exercises as

listed. He is free to choose, add or alter any exercises

whatsoever. In instances stressing drill, the teacher may

wish to select or limit exercises depending upon the par-

ticular skills of his class and/or individual students.

Difficult problems have been starred and may be considered

as optional. However, these problems are the most rewar-

ding as well as the most challenging, and the teacher should

discuss some of these in the classroom and/or assign them

to the better students as homework. In all instances,

the teacher should study the exercises before assigning



them, carefully noting the concepts involved and approxi-

mating the time required for those exercises chosen. To

insure that the teachers' evaluation of time for an assign-

ment is as accurate as possible, the teachers should occa-

sionally ask students to time homework assignments, allowing

him to.compare the true mean time with his judgement.

5. Proofs. The proofs presented in the commentary and the

text are not to be accepted as the only possible, logical

proof. The teacher should expose the students to other

approaches, and encourage the students to develop their

own proofs. Student approaches, very often, are more

direct, less involved, yet complete mathematical solutions

to problems.

6. Self-Study Units. At various points within a chapter,

certain sections will be identified as "self-study" ones.

(These are fewer in number in comparison to Course I.)

In essence, these sections usually contain simple appli-

oatiOns of concepts previously taught and such sections

should be regarded as being within the scope of each stu-

dent's ability.

7. Summary and Review Exercises. At the end of each chapter,

the teacher will find a summary of the main concepts stu-

died, followed by as series of related review exercises.

The teacher may wish to assign the reading of the summary

and the completion of the review exercise as:
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(a) homework to be reviewed in class the following day,

(b) self-study with time allowed the following day for

student questions,

(c) classwork or

(d) test items.

8. Tests. At the end of each chapter commentary, the teacher

will find a series of suggested test items. The teacher

should again feel free to choose, add, or alter any of

these problems in constructing a test for his own class.

An additional source of test items, when altered, would

be the review exercises appearing at the end of each chap-

ter in the text.

9. Unified Approach,. The teacher should be alert to related

topics and concepts throughout the entire course. The

students should be able to grasp key ideas that weave a

continual thread throughout the main body of the text of

Course II. (Many of these concepts were previously deve-

loped in Course I.) Properties and relations must contin-

ually be placed in the foreground and mathematics should

be viewed as a united subject rather than a series of dis-

joint branches of learning.



Teachers Commentary of Unified Modern Mathematics Course II

is an expansion of the original commentary written by the au-

thors of the text. It was revised by the following pilot tea-

chers in the SSMCIS Project:

Franklin B. Armour, Teaneck, New Jersey

Samuel Backer, Elmont, New York

Douglas R. Bumby, New York, New York

Annabelle Cohen, Teaneck, New Jersey

John Gregory, Westport, Connecticut

Alexander Imre, Elmont, New York

Edward Keenan, Elmont, New York

Christine McGoey, Leonia, New Jersey

Mary Murray, Elmont, New York

Mary P. Renda, Teaneck, New Jersey

Vladimir P. Rodionoff, Sao Paulo, Brazil

David Swaim, Leonia, New Jersey

It is hoped that the teaching experience of this team will

be reflected in a practical list of suggestions and a reason-

able estimation of time allotments for the whole of this com-

mentary.



Chapters

Time Estimation - Course II

Teaching Days Test Total

Chapter 1 13 days 1 14

Chapter 2 16 - 17 days 1 17 - 18

Chapter 3 18 - 21 days 1 19 - 22

Chapter 4 15 days 1 16

Chapter 5 14 clays 1 15

Chapter 6 19 - 23 days 1 20 - 24

Chapter 7 14 days 1 15

Chapter 8 14 days 1 15

Chapter 9 25 - 28 days 1 26 - 29

Chapter 10 11 days 1 12

Appendix A - Independent Study - no time estimate

9



ERRATA FOR COURSE II

PART I

Chapter 2

Page 109 Line 21

Age

Chapter 3

Line

a = 3

instead of a = 0

Change

216 last line of should read:
first paragraph

"that x = . implies

that 7x + 10 = 15."

223 section 8(a) should read:

83x2 - 14x + 8 = 0"

Chapter 5

Ptrit Line change.

227 5 expansion ---> extension

8 and x.a = b may have no

whole number solutions.

16 xa + 6x + 8 . 0 has as the

228 3 than > that

20 5 > 5'

242 line 5
from bottom

245 (an inclusion)

10

11 OW OW to



At this point in the discussion of real numbers, the teacher

should introduce the following procedure in order that the student

awill be able to find a rational number of the form r a, b E Z

b 0 when he is given a repeating decimal form.

Example 1. Let N = .33

Mult. y X 10 :/fi . 10N = 3.33

Subt. from 9N = 3.00

1N

Example 2. Let T. N = .120'

Mult. X 100 T. 100N = 12.12

Subt. from.. i. 99N = 12

12 4
N = 79-

or
n

Example 3. LetT.N = 1.23123r

Malt. X 1000i, 1000 N = 1231.2 r

Subt. 4 from 9999N = 1230

N
1 ps i)

9g9
230

Example 4. Let N = 1.70

Multi. X 10 10N = 17.0

Multi. X loo 100N al 172.22

Subt. IN from 90N. 155.

N = 3-91)5. or 11r



page 249

9

Line Change

Problem 7(f)

Example 1,

.333' -----> .333...

.7183946- ---> .7183946...

.7184623- > .7184623...

page 253 line 5 from x = ,a2a2a3a4" >
bottom

y = .b1b2b3b4'" > .bib2b3b4...

page 251 line 15.

page 252

page 257

page 259

line 19

line 20

line 13

line 15

line 18

c = (1, 1.7, 1.73, 1-732, 1.7320,

...1

1,7320"' > 1.7320...

1.7320"' > 1.7320...

Should read:

For example, the unique positive

solution to the equation x3 = 4,

x = 4/T is inR ; the unique

positive solution to the equation

x7 = 10, x = Vro is inR.

ax > a.x

= (7 (-104/ff > (7 + (-10)47

Problem 1. Re letter a

page 260 Problem 13 Should read:

If a, b are real

numbers a Z 0, b > 0

thene:

b ART
PU



Section 6.7

Section 6.10

Section 6.15

Section 6.17

Section 6.18

Section 6.23

- 10 -

Chapter 6

p. 286 No. 4 c) M-3.55
d) Ar2-2

No. 6 e) (x: -2< x < 2)

p. 294 Example 2: positive x-axis = OI
without point 0.

p. 308 No. 6 (line 6 should read.,.)
Y:11 _ 7-3
ic.:72- 4:7

p. 313 No. 7 G divides AF, from A to F, in
the ratio 2:1.
Simply AG:GF=2:1

p. 317 No. 3
b A -4,0), B 0,3
c A 5,0), B 0,12)

ip. 327 No. 4 Omit last sentence

PART II

Chapter 7

p. 5 - line 9 should read 1.35---1, 2.70

p. 25- problem 6, line 3 p, = 1

p. 44- last line any t E B, t = f(a) for some a c A.

p. 48- problems 7) graphs graph delete 3, 5.

p. 56- problem 2d change to k.

3



P. 57-

p. 58-

p. 70-

p

co

problem 3 Second map k should be g.

3 instead of zproblem 6

To be noted by teacher after question at end of page To.

4.
XI

On page 70 of the text the above graph is what is

required in the last paragraph i.e. the function

f: and its inverse g: x-sN for the restricted

domain R.

71- Figure 7.21 The teacher should indicate to the class

that the unit on the x axis is not equal to the unit

on the y axis and then a projection to the function

curve will then give the unit measurement for the x

axis and henceff 2: 1.3

73 - example 4. as given "or"

-12 NT' Nt5 NaiT

.

p. 77 - (6) (F, +, ) is not a [field because (F\(c)

not a group.]

P. 79 - problem 6. (m) should read [n g](10)

14

is



page 87

page 81

- 12 -

Chapter 8

5th line from last

"which are which are less"

strike one of the "which are's"

Line 3 and 4

The World Almanac and daily newspapers

are nexamples 11 of statistical

add the word "examples"

page 94 Paragraph 2, second line

"attention" misspelled. - atention

page 98 Exercise 1 (b) last word misspelled

"lenghts" should be "lengths"

page 107 last line: "total of the frequencies"

change to "sum of the frequencies"

page 113 Exercise 6. Point of confusion

"Find the mean number of

students per class, and compare it with

the median number of students."

Suggest dropping "number of students"

(See page 121 Exercise 2a) Wording is better)

Chapter 9

p. 135 line 9 'Tr = 2p1" not "OP' = 20P"

p. 152 ,line 7 "r(0, 80)" not "R(0, 8o)"

P. 153 line 4 "r(0, 8o)" not "R(0, 80)"

15
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p. 161 Number 12 Change "Prove ts HFoHBOHFoHA = i.

p. 161 Problem 12 Change the order of compositon ts HFoHB0HF0HA.

p. 161 In the lemma "For any point X, if X-2-->X10 then

shr,uld read "For any point X, if X F ->X'

and if x__2__>xl, then F = G.

p. 169 Number 10 should be starred

p. 171 Exercise 1 After "Interpret" - add the following:

"Using these results, show that the set of translations

(in a plane) is a group under composition."

p. 172 Exercise 9 (c) Should read "Let R2 be..."

p. 176 Figure at the top should be labeled'"Figure 9.17"

p. 178 lines 8-9 should read M is 2U.... and 5131 = 2Ug

p. 183 Problem number 4 Should read "Given ABCD is a parallel-

and given a point P not on the parallelogram"

p. 183 Problem number 4 Should read "Show HB
oHA

Chapter 10

p. 212 Example 4(d) The diagonal should measure 25.

p. 222 (i) Exclude phonograph record in paragraph 1.

(ii) The rectangle in paragraph 3 should read ABJD

not ABCD.

p. 223 Exercise 4 Include words in terms of r.
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Chapter 1

Mathematical Logic and Proof

(Approximate Time Estimate - 14 days)

General Introduction

When teaching this chapter the teacher should be aware

of the role of logic in the SSMCIS program as a whole and in

Course II in particular. In the SSMCIS program, logic is

seen as a tool to be utilized by the student in constructing

a proof, or perhaps more correctly, as a guide for checking

the mathematical correctness of his own reasoning. In

Course II, this chapter is intended to help ease the transition

from the informal or pre-mathematical reasoning of Course I

to the formal proofs of Course II (as for example, in the

Groups and Affine Geometry chapters) . Therefore, this

chapter should not be seen as a first course in formal

mathematical logic. The material chosen for inclusion in the

Chapter was deemed to be the minimum necessary for the student's

later work in the SSMCIS program, so that the teacher need not

be concerned with the fact that from an advanced point of view

there &.re certain gaps and omissions. In most cases, it would

be inadvisable for the teacher to try to fill the gaps or to

add more advanced material, for to do so would greatly lengthen

the time spent on this chapter at the expense of other material.

Furthermore, full understanding and appreciation of the logic

used in mathematics requires a degree of maturity and

experience that few students at this level can be expected to

have. We strongly recommend, therefore, that teachers try
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this chapter as it is written.

As illustrative examples, and in the exercises, material

from Course I has been freely used, both for purposes of

review and to bring to each new idea some previous

mathematical experience of the student. While the review

aspect of such problems provides excellent opportunities for

the teacher, it should not be over-emphasized. Since the

entire program is organized in a spiral manner, all the

major topics of Course I will be reviewed and extended in

later chapters in Course II, so that if a student is blank

on some fact or area mentioned in an exercise, it is usually

wise to pass on quickly after a mimimum amount of comment

Examples and exercises drawn from non-mathematical

experience have been largely (though not entirely) avoided.

We have found that examples of this type (used more often in

an earlier version of this chapter) sometimes confuse more

than clarify. The reason is that too much is connotated by

such an example, so that conclusions may be drawn that have

no relation to what was intended. It is possible that a

student will, for some reason, encounter serious difficulties

with some particular example in the text--difficulties not

directly related to the bit of logic or language involved.

In such cases it is usually best to move on with a remark

such as "Perhaps this example is confusing you, so let's

try another." In this way the teacher can usually determine

whether the student's difficulty is related to the logic.
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1.1 Introduction and 1.2 Mathematical Statements
(Time estimate including 1.3 = 2 days)

Several important ideas are presented in these sections:

the necessity for precision in mathematical language, as

opposed to ordinary language; the true or false nature of

mathematical statements; and the negation of mathematical

statements. The teacher should particularly reinforce the

student's understanding that these concepts are meant to

apply primarily to mathematical sentences.

In connection with sentences and statements, the concept

of an open sentence is introduced briefly. Open sentences

will be explored in greater depth in the following and later

sections, so that the teacher need not dwell on them here.

However, the student should be able to recognize an open

sentence.

In this and later sections, truth tables are introduced,

not as a means of defining connectives, but as a way of

summarizing the work already done. Some work with truth

tables is in the exercises; however, they are not intended

to be a foundation-stone for the chapter, as they might be

in a course on formal logic. It is important not to allow

the truth table for a connective to obscure the meaning of

the definition or the rationale behind the definition.

These sections, and the text section (1.4) that follows,

are not of more than average difficulty.
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1.3 Exercises

The first 11 exercises are designed to give the student

experience in determining what is and what is not a

statement. Exercises 12 through 21 provide v rk with

negations of statement and should lead the student to

discover a fundamental property of the negation: For any

statement S, "not (not (S))" is the same as S Exercise 22

is an extension of this principle.

Some of these exercises (12-22) may be omitted.

However, as a minimum, 16, 17, 18, and 21 ought to be done.

1.3 Exercises

1. Is a statement; false.

2. Is; true.

3. Not a statement, since it is a command and cannot be

judged true or false.

4. Not a statement; truth value depends on replacement for

x. (This is an open sentence.)

5. is; false.

6. Is; true.

7. Is; false.

8. Is; false.

9. Is; false.

10. Is; true.

11. Is; true.

12. 721 is not prime. Original is false.

13. 71 x 27 4 1917. Original is true. 20



-18-

14. + : Original is true.

15. 71 is not less than 38 + 35. Original is true.

16. 1001 is not divisible by 13. Original true.

17. 1001 is divisible by 13. Original false.

18. 1001 is not divisible by 13.

19. (a) 7 x 3 3 in Z9

(b) 7 x 3 = 3 in Z9

( c ) 7 x 3 3 in Zo.

20. (a) 29 is prime.

(b) 29 is not prime

(c) 29 is prime

21 (a) S

(b) not S

dd Not Q. General rule: If n is even same as Q; if n odd,

same as not Q.

1.4 Connectives: And, Or
1Time estimate (including 1.5) = 1 r days

While this is an important section, most students should

have little difficulty with the main ideas--definitions of the

"and" and "or" compound statement. The definition, given for

the "and" compound statement is a reasonable one in that it

corresponds with the experience of everyday language. Some

students may question the reasonableness of the definition for

the "or" compound statement, since in everyday usage, "or" is

most often used in an exclusive (disjunctive) way. Probably

no explanation will be completely satisfying; perhaps the best
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the teacher can do is to indicate that the definition given'

is the one that has been found to be most useful mathematically.

A similar difficulty comes in Section 1.6 when the conditional

statement is introduced.

Finding solution sets for open compound sentences

should not be considered as important as the first part of

this section, so if a few students have difficulty at this

point, the teacher should not dwell upon it. Likewise, the

teacher need not expect all students to understand the

discussion of the negation of compound statements at the end

of the section. Some further work with these negations comes

in the exercises.

1.5 Exercises

The first ten exercises giving practice in determining

truth values of compound statements are most important,

although better students will not need to do all of them.

Exercises 11 and 12 throw additional light on the Telationship

between the two types of compound sentences introduced in this

section, and should he done by all students. Exercises 13 and

14 give some practice in using truth tables and allow the

students to make some discoveries about the negation of

compound statements. One or both of these should be done and

discussed in class.

Exercises 15-16 are discovery exercises dealing with the

solution sets of compound open sentences, and if the class is

99,
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having difficulty with the section in general, these exercises

might be considered optional or for the better students

Answers to exercises

1.

2.

3.

10.

11. "S and T" must also be false if "S or T" is false; no

conclusion can be drawn about "S and T" if "S or T" is

12. "G or H" must also be true if "G and H" is true; no

conclusion can be drawn about "G or H" if "G and H"

is false.

True 4. True 7 False

False

False

5.

6.

False

False

8,

9.

False

True

True

13. not P Not Q P or Q, (not P) and (not Q)

T

T

F

F

T

F

T

*F

F

F

T

T

F

T

F

T

T

T

T

F

F

F

F

T

*Note the error in the book.

Relationship between last two columns: always opposite in truth

value. Conclusion: "P or Q" and "(not F) and (not Q)" are always

opposite in truth value, no matter what the truth value of P and

Q are, so must be negations of each other.

23



- 21 -

not P not Q P and Q (not P) or (not Q)

T

T

F

F

T

F

T

F

F

F.

T

T

F

T

F

T

T

F

F

F

F

T

T

T

The last two columns are opposite in truth value, so (as in

Exercise (3) must be negations of each other.

15. Solution set for P: (6, 7, 8, 9, .. )

Solution set for Q: (,.., 4,5 , 6, 7, 8)

Solution set for "P and Q": (6, 7, 8)

Solution set for "P and Q" is the intersection of the solution

set for P with the solution set for Q

16. AnB

17. Solution set for V: (4, 5, 6)

Solution set for W: (6, 7, 8, 9)

Solution set for "V or W": (4, 5, 6, 7, 8, 9)

The solution set for "V or W" is the union of the solution set

for V with the solution set for W.

18. CO.

1.6 Conditional and Bi-conditional Statements
Time estimate including 1.7 = 2 days)"

The definition of the conditional statement often proves

to be difficult for students at first, from experience it may not

seem reasonable that the conditional is true when both an

antecedent and consequent are false or when the antecedent is

false and the consequent is true. An effort has been made in the

21
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text to smooth over these difficulties by preparing the way

for the definition with two carefully chosen examples--one

mathematical and one non-mathematical--which lend

reasonableness to the definition of the conditional statement.

When students experience difficulty with this definition,

the following approach (similar to that used in the two

examples) might be used. First, the teacher can ask the

student when a (given) conditional statement can be

definitely said to be false. The student should realize

that this can only happen when the antecedent is true and

the consequent is false. Then, since the definition is

to operate in a mathematical context, and the conditional

statement is to be a mathematical one, in all other cases

it must be true. Unfortunately, this sort of argument is

not always satisfying. Students will recognize, as their

experience with mathematics grows, that this definition is

used because it is the most fruitful and reasonable one

mathematically.

The bi-conditional statement is important because it

leads to the notion of equivalence of statements. Here

again, students will most likely recognize only gradually

the power of equivalent statements. Note that using

equivalent statements in a proof requires that the atomic

statements (i. e. the smallest parts) of the equivalent

complex statements be the same. For example, a truth

table will show that the statements "A and not A' and

"P and not P" are equivalent, but this fact is not at all

PS
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useful in a proof. The teacher may wish to point this out

after the exercises have been completed.

1.7 Exercises

Exercises 1-7, 9, 10 and 13 will give students practice

in determining the truth value of conditional statements, while

exercises 8, 11, and 12 deal with bi-conditional statements.

Tote that of these, only one (Exercise 5) is non-mathematical.

Some students may argue that because this statement is non-

mathematical the definition cannot be applied and no

conclusion can be drawn about the truth or falsity of the

statement. This is certainly a valid argument and can help

the students discover the important distinction between

mathematical and non-mathematical statements and arguments.

Most students should do all of these introductory exercises,

some or all of Exercises 14-16 (finding negations of conditional

and bi-conditional statements), and Exercise 17, as a minimum.

Exercise 18 is designed to illuminate an important point

about symmetry and transitivity of relations, using the

logic developed in this section (see answer to Exercise 18

below). Exercises 19 and 20 explore further equivalent

statements from the point of view of truth tables. Exercise

20 is more difficult than the others and may be left to the

better students.

26
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Answers to Exercises

1. True

2. False

3. True

4. True

5. True (if we apply the definition and regard the antecedent

as false)

6. True

7. False

8. False

9. True

10. True

11. True

12. True

13. True

14. 6 is odd and 3 x 6 is even.

15. (a) 3 is even and 5 is odd, and 3 + 5 is odd.

(b) 3 + 5 is even, and 3 is odd or 5 is even.

(c) 3 is even and 5 is odd, and 3 + 5 is odd, or:

3 + 5 is even, and 3 is odd, or 5 is even.

16. (a) 4 is odd and 3 x 4. is even.

(b) 3 x 4 is odd and 4 is even.

(c) 4 is Aid and 3 x 4 is even, or:

3 x 4 is odd and 4 is even.

Note: The bi-conditional "A iff B" is equivalent to the

compound statement "(if A, then B) and (if B, then A)."

r)
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To negate this, we have "not (if A, then B) and (if B,

then A) " which, from Section 1.4, is equivalent to:

"not (if A, then B) or not (if B, then A)". Now, since

"not (if A then B)" is equivalent to "A and not B," and

"not (if B, then A)" is equivalent to "B and not A", we

have finally "A and not B" or "B and not A" as the negation

of the bi-conditional "A iff B". Hopefully, students will

be able to write this negation for the specific examples

of these two exercises without going through this long and

rather formal argument. The teacher should not spend too

much time on these two exercises.

17. P Q not Q if P, then Q not (if P, then Q) P and (not Q)

T

T

F

F

T

F

T

F

F

T

F

T

T

F

T

T

F

T

F

F

F

T

F

F

18. R is symmetric; for, whenever xRy is true (i. e. only

when x = y), then yRx is true. R is transitive; for

whenever aRb and bRc are true (i. e. only when a = b = c),

then aRc is true also.

19.

m't

STUTandUSorTSorUITI 0 Ur
andUand

(S UL 11
(S or U)

TTTT T T T T

TTFF T T T T

TFTF T T T T

TFFF T T T T

F .T T T T T T T

FTFF T F F F

FFTF F T F F

FFFF F F F F
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The last two columns have the same truth values at

every line, so the statements "S or (T and U)" and "(S or T)

and (S or U)" are equivalent.

20.

TO
A B C B or C not C

a...L sl.,

then B
A.J. i.civ v v / s

then (if A, thenB
11 Aty 1.4=1.1.

(B or C)

TTTT F T T T

TTFT T T T T

TFTT F F T T

TFFF T F F F

FTTT F T T T

FTFT T T T T

FFTT F T T T

FFFF T T T T

1.8 Quantified Statements (Time estimate for 1.8 - 1.10 =
1 1/2 days)

This section develops the concepts of universal and

existential statements and quantifiers. Many examples are

given emphasizing the different forms statements can take.

Negating a quantified statement is described and it is

suggested that teachers either have the students form the

negation of each of the examples in this section or do some

of the 1.10 exercises in class.

1.9 Substitution Principle for Equality (SPE)

This section defines SPE and shows that left operation

is a result of it. The main idea of this section can be

91
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emphasized with just a few examples since it can be

re-emphasized in the sections on inference and proof.

1.10 Exercises (exercises 19 and 20 migrt pose difficulties.)

1. True Universal

2. False Universal

3. True Existential

4. True Existential

5. False Universal

6. True Existential

7. False Universal

8. False Existential

9. True Existential

10. False Universal

11. True Existential

12. False Universal

13. False Universal

14. True Existential

15. False Universal

16. Negations

1. Some line reflections are not isometries. Existential.

2. Some isometries are not line reflections. Existential.

3. All line reflections are not isometries. Universal.

4. All isometries are not line reflections. Universal



- 28 -

17. Negations

5. For some integers x and y, x2y2 is odd.

6. For all integers x and y, x2y2 is odd.

18. Negations

10. For some mappings s and t, sot tos.

11. For all mappings and h, goh = hog.

19. True.

Negation: for some integer s, there does not exist an

integer t such that t > s.

20. False

Negation: for all integers x, there exists a such

that y < x.

21. SPE is used for the following substitutions

37 = + 7

53 = 50 + 3

30 x 50 = 1500

7 x 50 = 350

30 x 3 . 90

7 x 3 = 21

1500 + 350 + 90 + 21 = 1961

22. SPE is used for the following substitutions

0 = 0 + 0

r (0 + 0) = r 0 + r 0

1.11 Inference (Time estimate including 1.12 = 2 days)

In this section, 5 rules of inference are discussed and

many examples are given. It is important for each example to
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point out the form of the argument and to remind the student

not to base conclusions on any outside or previous knowledge

but only on what is assumed true. In order to separate the

role of inference from the truth value of statements,

examples are used where false statements are assumed true

(as in example 3d page 41). If form is cons1,--.Jd, these

examples should pose no problems. It will be helpful when

going over the examples to assign letter names to the

statements and to classify the form of the argument presented.

It should also be pointed out to the students that

statements of the form A are B" can be interpreted as

"if x is an A then it is a

Example 7 (page 44) which states "all isometries

preserve angle measure" is of this form and can be interpreted

as "if x is an isometry, then x preserves angle measure."

1.12 Exercises

These exercises are concerned mainly with form. It

might be a good idea to have all students do Part (1) for

exercises 1-15 (that is state the inferences) and to assign

some problems to each student to complete part (2). Note

that problem 12 is the most complicated. Question 16 should

be attempted after the other questions are fully understood.

This problem might also be used as a special assignment.

97
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Answers to Exercises

1, P: 1 Toss a Fair coin

Q: The probability of getting a tail is 1/2

Assumed true, if P then Q, P

Conclusion, Q

by inference Rule (1), Rule of detachment

2. R: Set A is a subset of every set

S: Set A is the empty set

Assumed true, if R then S, not S

Conclusion not R: set A is not a subset of every set

by inference Rule (2)

3. P: Sets A and B are the complements of each other

Q: The union of the two sets is the universe

Assumed true, if P then Q, Q

No conclusion

4. R: The image of point A under a reflection in

point P is At

S: P is the midpoint of AA'

Assumed true, if R then Ss R

Conclusion, S

by inference Rule (1)

5. A: M is parallel to N

B: M is parallel to P

Assumed true, A or B, A

No conclusion

6. P: B is between A and C

Q: AB + BC = AC
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Assumed true, if P then Q, not Q

Conclusion Not P, B is not between A and C

by inference Rule (2)

7. R: The natural number 7 is even

S: The natural number 7 is odd

Assumed true R or S, not R

Conclusion, S

by inference Rule (5)

8. A: x and are both pc,Itive

B: The product of x and is positive

Assumed true, if A then B, B

No conclusion

9. P: The sum of a and b is negative

Q: At least one of a, b is negative

Assumed true, if P then Q, not P

No conclusion

10. R: x and are both positive

S: The product of x and is positive

Assumed true if R then 5, not R

No conclusion

11. P: a and b are rational numbers

Q: There is a rational number between a and b

R: a and b are greater than five.

Assumed true if P then Q, P and R

Conclusions, P .2rom P and R by

inference rule (3)

then Q by inference rule (1)

PI
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12. This example contains more simple statements than first

meet the eye. One way to attack this problem is as follows:

x> 8 is equivalent to x> 8 or x= 8

ix - 51>3 is equivalent, co x > 8 or x < 2

and y > 5 is equivalent to Not y < 5

therefore assign letters as follows:

A: x > 8

B: x = 8

C: x < 2

D: y < 5

Our original statements which we assume true then become:

"if (A or B) then Not D",

"(A or C) and D"

from the second statement we can infer

D using inference Rule (3)

D is equivalent to not (not D)

Thus we can infer not (A or B)

from the first statement using inference Rule (1)

Not (A or B) is equivalent to "Not A and Not B" from

this we can infer Not A using inference Rule (3)

From the second statement we can also infer A or C

using inference Rule (3)

Finally from the last two conclusions we can infer C

using inference Rule (5)

Thus our conclusion is x < 2.

13. P: a number is divisible by 8

Q: a number is divisible by 4

35
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R: e. number is divisible by 2

Note the use of the universal statements.

In this case the substitution instance is 88

for the term "a number"

Assumed true: if P then QS if Q then R

and P.

Conclusion Q by inference rule (1)

then R also by inference rule (1)

Thus the specific conclusion reads 88 is divisible

by 2.

14. A: x = 3

B: x = 4

C: y = 7

Assumed true A or B, if A then C, not C

Conclusions first not A using the last two

statements and inference Rule (2)

Then B using inference Rule (5)

15. P: AC= re

Q: B is on AC

R: AC n AB = A

Assumed true, if P then Q

P or R

Not Q

Conclusions Not P using inference Rule (1)

Then R using inference Rule (5)

16. The murderer was the stepson.

Using letter names the argument becomes:

A: The butler murdered Mr. X
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B: The stepson murdered Mr. X

C: The murder occurred before midnight

D: The stepson's testimony is correct

E: Tne house lights were turned off at midnight

F: The butler is wealthy

1. A or B

2. If A then not C

3. If D then C

4. If not D then not E

5. E and not F

From 5. infer E Rule (3)

From E and 4. infer D Rule (2)

Fruit D and 3. infer C Rule (1)

From C and 2. infer not A Rule (2)

From not A and 1. infer B Rule (5)

1.13 Direct Mathematical Proof and 1.14 Indirect Mathematical
Proof (Time estimate including 1.15 13TaW)---

These two sections give detailed and rigorous examples

of direct and indirect mathematical proofs emphasizing three

strategies. The emphasis here should be on the strategies

used not necessarily on the rigor since, as mentioned in the

text, abbreviated forms of proof are usually given and the

degree of abbreviation will depend to a great extent on the

individual teacher and his students. A careful analysis is

given of the proof of the statement "if a and b are even whole

numbers, then a + b is even." Students should be reminded
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that although they may give abbreviated forms of mathemaAcal

proofs, a similar analysis of all steps should be possible

and they should be able to justify all conclusions.

1.15 Exercises

1. Theorem C. If a or b is even,

then ab is even

Proof (Given on pages 52-53)

Analysis:

Step 1. The strategy here is to assume the antecedent

true and to show the consequent follows also

as true.

Step 2. This is an argument by cases that is for

"a or b is even" to be true "a is even" or

"b is even" or "both a and b are even" will

be true. We take the first case as true and

claim a similar argument will hold for the

other cases.

Step 3. Using the definition, N is even if and only

if N = 2M for some M in W, and the assumption

a is even from Step 2 we conclude a = 2x by

inference Rule (1)

Step 4. Right operation principle states that for

any x, y, z in S, if x = y then x o z =

y o z in (S, o). In particular using

a = 2x then ab = (2x)b in (W0.)
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Step 5. The associativity property of multiplication

in(W,.) states, if x, y, z are elements of W,

then (xy)z = x (yz). Since 2, x and b are

elements of W, inference Rule (1) justifies

the statement (2x)b = 2(xb).

Step 6. Using the statements of 4 and 5, SPE justifies

stating ab = 2(xb)

Step 7. The closure property and inference Rule (1)

justify this statement.

Step 8. Inference Rule (1) and the definition given

above justify this statement

2. Theorem: Let a, b, and c be whole numbers. If a

divides b and b divides c, then a divides

c.

Proof: A direct strategy is used.

Steps Reasons

1. a divides b and b divides c. 1. Assumption

2. a divides b. 2. Inference Rule (3)

3. b = ax for some x in W. 3. Definition of divides

4. b divides c. 4. Inference Rule (3) on

5. c = by for some y in W. step 1

6. c = (ax)y. 5. Definition of divides

7. (ax)y = a(ry). 6. SPE step 3 in step 5

8. c = a(xy). 7. Associativity of Mult.

9. xy is in W. 8. SPE step 6 in step 7

10. a divides c. 9. Closure property

10. Definition of divides

flg
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3. Assertion: If a + b is odd and a is even

Then b is odd.

Proof: An indirect approach is used.

We will assume "P and (not Q)" and

show a contradiction.

1. a + b is odd and a is even 1. Assumption

and b is even.

2. a + b is odd, 2, Inference Rule 3

a is even. used twice

b is even

3. a and b are even 3. by inference Rule 4

4. a + b is even 4. Theorem A

5. a + b is both even 5. Steps 2 and 4

and odd.

Therefore "P and (not Q)" has led to a false statement and

must itself be false.

Assertion: If a + b is even, then a is even and b is even.

Counter example:

5 + 3 is even but 5 is not even and 3 is not even.

This assertion is not true. The one counterexample above

disproves it. This exercise was included to point out to

students that because something is asserted does not mean

it is true.* This exercise can also be used to point out

to students that only one counterexample is needed to

disprove an assertion.

*It will be interesting to see just what "proofs" if

any are given.

110
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5. Assertion: If a, b and c are odd,

Then ab + ac is even

Proof: A direct strategy is used.

1. a, b, and c axe odd

2. a is odd.

b is odd.

c is odd.

3. b and c are odd

4. b + c is even

5. a (b+c) is even

6. a (b+c) = ab + ac

7. ab + ac is even

1. Assumption

2. Inference rule (3)

3. Step 2 and

Inference rule (4)

4. Theorem B

5. Theorem C

6. Distributive property

of (W, T )

7. SPE step 6 in step 5

1.16 Summary (Time estimate including 1.17 = 1 day)

1.17 Review Exercises

1. a. True statement

b. True statement

c. Not a statement - a command.

d. False statement

e. False statement

2. The compound statements are easily formed by inserting
.
and

or or between the two simple statements.

The negations are formed by changing

a) are to are not and

°Jewtolis noe.
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b) = to and

°Every prime number has" to *Some prime numbers do not have"

c) > to <, and

Some triangles have"to°Every triangle does not have.

d)
e
is to is not and

All cats have"to°Some cats do not have."

The negations of the compounds are easily formed if we

consider "Not (P or Q)" equivalent to "Not P and not Q"

and "Not (P and Q)" equivalent to "Not P or not Q."

3 . (a) if a > b then a + c > b + cc

True

(b) if x 0 then x2 > 0.

True

(c) if x/x I then x = 0

True

4. (a) I do not go swimming

(b) the water is not cold

(c) No conclusion

(d) No conclusion

(e) The Yankees did not win the pennant.

The Yankees did not play well.

(f) (742)2 is an integer
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Chapter 1: Suggested Test Items

I. Given the following 3 statements:

A: 323 is prime.

B: 323 is a multiple of 17.

C: 17 is even.

Where A and C are false and B is true,

a) Write out the following statements and give their

truth values

1. A and B:

2. If C then B:

3. A or C:

4. Not A:

5. If not A then C:

6. Not B and not C:

7. If B then not A:

b) Using the simple statements A, B, and C form an

example of each of the following compound statements.

(use examples different from those given in part a).)

1. a false compound and statement

2. a true compound or statement

3. a false conditional statement

4. a true biconditional statement

II. In each of the following, assume the given statements are

true and determine what inferences you can make.

a) If N is a natural number, then 2N is even. 5 is a

n



natural number.

b) x is an even number or x is a perfect square. x is

not an even number.

c) If x is even then x is not a perfect square. x is

a perfect square.

d) a > b end b < c. If b < c then a = d.

e) If 8 is a factor of x then 4 is a factor of x.

9 is a factor of x or 8 is a factor of x.

4 is not a factor of x.

III. Explain what is meant in mathematics by the term proof.

Include in your discussion the differences between direct

and indirect proofs and describesif possible strategies

used in proving mathematical statements.

Answers to Suggested Test Items

i.a) 1. 323 is prime and 323 is a multiple of 17. False

2. If 17 is even then 323 is a multiple of 17. True.

3. 323 is prime or 17 is even. False.

4. 323 is not prime. True

5. If 323 is not prime then 17 is even. False.

6. 323 is not a multiple of 17 and 17 is not even. False.

7. If 323 is a multiple of 17 then 323 is not prime. True"

b) 1. "A and B"

"A and C"

or "B and C"

3.4
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2. "A or B"

"B or C"

3. "if B then A"

" if B then C"

4. "A iff C"

In a) 2.5 is even

b) x is a perfect square

c) x is not even

d) a = d

e) 9 is a factor of x

III. The main points which the students should include are the

following:

A mathematical statement to be proven is usually in the

form of a conditional. A proof consists of a sequence of

statements leading to the desired conclusion. Each step

is justifiable as an axiom, definition or theorem, or as

the result of an inference from previous statements. A

direct proof begins by assuming P true and showing Q will

follow as true also. An indirect proof begins by assuming

Q false and showing that P would follow also as false or

by assuming "P and (not C)" and showing that this leads to a

contradiction.
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Chapter 2

Groups

Time Estimate for Chapter: 16 - 17 days

The principal objectives of this chapter are to:

1. become aware of the great prevalence of groups in mathema-

tics,

2. learn the definition of a group,

3. appreciate the unifying power of group theorems,

4. be exposed to another axiomatic system,

5. be exposed to additional proofs at a more formal level,

6. learn of permutations and permutation groups,

7. learn functional notation,

8. learn the meaning of an for an operational system,

9. learn a few basic group theorems and their proofs,

10, learn what an isomorphism is and what isomorphic groups are.

2.1 Definition of a Group (Time: 3 days)

In 2.1 an effort is made to convey the importance of groups

by showing how prevalent they.are and how they* might serve to

unify apparently diverse situations in mathematics. Many il-

lustrations of groups are provided before arriving at a defi-

nition of a group.

Time should be taken with this inital section because

of its great importance in developing the definitions and pro-

perties of fields and rings which occur in subsequent chapters
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and courses. The program stresses the use of groups in

explaining the step by step solution to linear equations.

2.2 Exercises

1. (a) 1 (b) 0 (c) e

2. (a) -5 (b) (c) 1 (d) x (e) 3

3. (a) No identity, not associative

(b) No operational system

(c) 0 has no inverse

(d) No identity element

(e) 2 has no inverse

(f) No "dentity element

(g) No identity element

(h) No operational system

(i) No element has an inverse except 1.

(j) No identity element

(k) No identity element

(1) No operational system

(m) No identity element

(n) 0 and 2 do not have inverses

0 S L A B

S

L

A

R

S L A R

L A R S

ARS L
R S L A

(a) (S,L,A,R) a set of.commands
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(b) followed by assigns to every pair of commands a command.

(c) Stay or S

(d) Yes

(e) (1) - (4) All Yes

(f) Yes. Associativity, unless each command is regarded as

5.

a mapping.

o (0,0) (0,1) (1,0) (1,1)

(0,0) (0,0) (0,1) (1,0) (1,1)

(0,1) (0,1) (0,0) (1,1) (1,0)

(1,0) (1,0) (1,1) (0,0) (0,1)

(1,1) (1,1) (1,0) (0,1) (0,0)

(a) (0,0)

(b) (0,1)

(c) [(0,1) ° (1,1)] ° (1,0) . (1,0) 0 (1,0) (0,0)

(0,1) ° [(1,1) ° (1,0)] . (0,1) 0 (0,1) . (0,0)

(d) Yes

6. (a) Yes (1) No, not associative and no identity.

7. (a) Yes (bj _yes (c) Yes (d) 1,4

8, (a) (z01 and others.

(b)
o 0 1 2 Not associative as (101) 02 0o2 = 2

0 0 1 2 and to (l02) = lol = 0

1 1 0 1 0 is the identity element. Each

2 .2 1 0 element is its own inverse.

(c) (z, aob = larger of (a,b,)
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(d)
0 1 2

Not associative as (1°1) 02 = 0 o 2 = 2

0 0 1 2 and 10(102) = 1 o 1 = 0

1 1 0 1 IdenUty is 0

2 2 1 2 2 has no inverse

9. (a) No;

(b) Yes

(c)

there is no identity

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

(Ly [01,.) is a group.

([1,6)0 4) is a subgroup, and there are others.

10. No; there is no identity

_11. (a) Yes__ (b) _Yes (c)

12. Yes; na + nb = n(a + b)

* 13. (T,°) is associative since (S,o) is. If x E T, then

xi E T. Therefore x o xi = a, e E T.

14. (a)

A [ ) [a) [b) [a,b)

( ) f ) (a) (b) (a,b)

(a) [a) [ ) (a,b) (b)

(b) [a,b) ( ) (a)

[a,b) {a,b)
CIO) (a/ ( 1

49



(b) ( ) is the identity element

(c) (b)I = (b)

(d) ((a) A (b)) A (b) (a,b) 6 (b) (a)

(a) A ((b) A (b)) = (a) A ( ) = (a)

(e) Yes. It possesses the required properties.

15.
( ) (a) (b) (c) (a,b) (a,c) (b,c) (a,b,c)

( ) ( ) (a) (b) (c) (a,b) (Else) (b,c) (a,b,c)

(a) (a) ( ) (a,b) (a,c) (b) (c) (a,b,c) (b,c)

(b) (b) (a,b) ( ) (b,c) (a) (a,b,c) (c) (a,c)

(c) (c) (a,c) (b,c) ( (a,b,c) (a) (b) (a,b)

(a,b) (8,b) (b) (a) (a,b,c) ( ) (b,c) (a,c) (c)

(a,c) (a,c) (c) (a,b,c) (a) (b,c) ( ) (a,b) (b)

(b,c) (b,c) (a,b,c) (c) (b) (a,c) (a,b) ( ) (a)

(a,b,c) (a,b,c) (b,c) (a,c) (a,b) (c) (b) (a) ( )

(b), (c), (d) same as exercise 11

16. (a.) (0,0),

(b)

(0,1), (0,2), (1,0), (1,1), (1,2)

_(o41) (0,2). (1,0). (1,1) (1,2)

(0,0) (0,0) (0,1) (0,2) (1,0) (1,1) (1,2)

(0,1) (0,1) (0,2) (0,0) (1,1) (1,2) (1,0)

(0,2) (0,2) (0,0) (0,1) (1,2) (1,0) (1,1)

(1,0) (1,0) (1,1) (1,2) (0,0) (0,1) (0,2)

(1,1) (1,1) (1,2) (1,0) (0,1) (0,2) (0,0)

(1,2) (1,2) (1,0) (1,1) (0,2) (0,0) (0,1)

Identity element is (0,0)

50
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17. (a) (1) (Z,+) is an operational system with addition

being associative. The identity element is

0. The inverse of any element a is its additive

inverse -a.

(2) (Q \ (0),) is an operational system with multi-

plication being associative. The identity is

a
1, the inverse of every element 13- is its reci-

procallk.

(b) (1) (Z (0),+) is not an operational system as

-1 + 1 is not in the set Z \ (0).

(2) (Q,.) is not a group because 0 does not have

an inverse.

18. (a)
2a 2b 2a+b

is defined for all a, b in Z.

(b) (2a.
2b). 2c (2a+b) 2c 2(a+b)+c 2a+(b+c)

2a .(2b.2c) 2a (2b+c) 2a+(b+c)

Hence we have associativity.

20 is the identity element as 2
0

2
a
= 2

0+a
= 2

a

2
a

2
0

= 2
a+0

= 2
a

The inverse of 2 is 2 as 2

(c) The identity is 20 or 1.

-a = 2 .

(24)1 2-4; (2-3)1 23; (21)-I
=

2-1; (20)I
=

20

19. In (Zn,), 1 is the identity. 0 can have no inverse since

there is no element a such that 0 a = 1.

* 20. If n = 2, the set is (1), and there is a group of one

element. Suppose however n>2 and n is eve4. Then 3 = k

is in the set. Thus, 2 and k are in the set. However,
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2 k = 0 is not in the set.

* 21. 2 and 2. are both less than n and hence are in Zn . How-

ever, p q = 0 is not in Zn.

2.3 A non-Commutative Group

In 2.3 the student is exposed, for the first time, to a

non-commutative group. Since all previous groups discussed

were commutative, the student often draws the conclusion

that all groups are commutative. This vivid example of

a non-commutative group is intended to steer the students'

thinking back on those properties that are essential for

a group as opposed to those that are not essential.

2.4 Exercises

Exercise 1 is a good illustrative example and may be done

with the students in class. The remaining exercises can be

assigned for homework.

1. (a) e: abc r: acb

p: bca s:

q: cab t: bac

(b) e and r do not alter the position of a

4

e and s do: not alter the position of b

e and t do not alter the portion of c

(c) (11) (t) (4) (r)

(2) (s) (5) felr,s,t)

(s) (6) (q)
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(7) ( )

(8) (s1

(9) fpl

(10) (s)

(11) (e,p,q1

(12) (e,r)

(14) (t)

(15) (e)

(16) (e,p,q,r)

(17) (r,s,t)

(18) (s)

(19) (e)

(13) (s) (20) (e,p,q)

(d) (1) (poq)I = e, ploqI

(2) (por)I = s, PiorI

(3) (qot)i = s, qiotI

(4) (xoy)I I I= y ox is

(5) (py (cly

= e, q
I
op

I
= e

= t, r
I
op

I
= s,

= r, t
I
oq

I
= s,

the conjecture.

q, (rI)I = r,

. All are e.

(por)I rIopI

(qot)i = tIoqi

(xI.I
) = x is

the conjecture.

(e) ((e,p,q), o) is an operational system for:

0 e p q

e e p q

p p q e

q q e p

The identity element is e.

Associativity follows from the fact that ((e,p,q,r,s,t),o)

is a group.

((e,p,q),o) has the inverse property for /DI = q,

el =e.

(f) The subgroups of ((e,p,q,r,s,t),o) are: ((e),o),

((e,p,q),o), ((e,r),o), ((e,$),0), ((e,t),o),
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((e,p,q,r,s,t),o).

(g) (1) (e,r), (qoe), (qor) = (q,t), (soe,sor) = (s,p),

(e,p,q,r,s,t) = (e,r) u fq,t) U (s,P)

(2) (e,r), (eop,rop) = (p,t), (eoq,roq) = (q,$)

(elp,q,r,s,t) = (e,r) U (p,$) u (q,$)

(3) (a) (e,$), (plt), (q,r1

or (e,s1 (p,r), (q,t)

(b) .(e,t), (p,r), (q,$)

(q,r)

2. (a)

4

(b)

(1

3

(c) (1

2

(d)

(1

4

2

1

2

1

2

1

2

3

(c)

3

2

3

2

3

4

3

2

or (e,t), (p,$),

(r,s,t)

4\ and
3),

and
4

4) and
3

4) and
1

2 3 4

2 4 1 3

(1 2 3 4

3 2 2 4

(1 2 3 4

3 4 1 2

0 2 3 4 yes
it 3 2 2) ,

3. A B C D B C

(a) Ax = (b)
C B A BADC

A B C (d) o etx IPy oCDAB
e

'fix

AY

eA
Ax

Ax e

A
y
P
o

y

Po

e

Po

y

ix

P PtPo y Lx
(e) ((e,Ax ,Ay'Po),o) is a group.

cA,
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2.5 More on Permutations (Time for 2.5 - 2.8: 2 days)

In section 2.5 there is a discussion of 1-1 into and onto

mappings S -S. For a finite set 1-1 into and 1-1 onto

S -----.S conditions for a mapping are the same, each implying

the other. For infinite sets this is not the case.

2.6 Functional Notation

In section 2.6 functional notation is discussed briefly.

It is important to relate functional notation to mappings.

2.7 More Notation

In 2.7 exponential notation for an operational system is

discussed. If there is but one operation, then there should

be no confusion. If two operations are present then multipli-

cation is the one that is used for exponentials. Thus 32 in

(Z,+) means 3 + 3 but in (Z,+,) 32 means 3 3. However,

it is better to avoid the symbol 32 when working with (zs+).

The use of a coefficient is better. Thus, in (Z$+) rather

than using "a2': use "2a", although according to our convention,

a
2

a + a and 2a = a + a, for (z,+).

2.8 Exercises

1. (b) (c) and (d) are 1-1, onto, and permutations. The

others are none of these.

2. (a) None.

(b) 1-1

t--kr
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(c) 1-1, onto, permutation.

(d) 1-1, onto, permutation,

(e) onto. Note: For every positive integer k there is

a positive integer n such that

, 1 ,

-r
1 ,-r 1 ,-r

1k = [1

3. (a) There are many answers. We give but one for each

mapping.

Domain Range

fl (-3,-2,-1,0,1,2,3) [011,4,91

f2 Z Even Integers

(b) f3 Even Integers

f4 Even Integers

fs Z Z U

4. (a) None.

(b) 1-1, onto, permutation.

(c) 1-1, onto, permutation.

(d) None.

(e) None.

5. (a) 4/9 (h) .65 (o)

(b) 56.25 (i) 9 (p) .8

(c) 549.025 (j) 6.25 (q) 3/7

(d) 9/64 (k) 18 (r) 1.25

(e) 81 (1) 12.5 (s) 1/49

(f) aaaa or a4 (m) 3 (t) 1/49

(g) 6.5 (n) .9 (u) 49/50 or .98
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5

-4

1/5

-1/4

5/4

4/5

(g)

(h)

(i)

(0')

(k)

(1)

5

5

5

5

5

1/5

(m)

(n)

(o)

(?)

(q)

(r)

5/4

-4

5/4

4/5

-1/4

4/5

7, (a) f1 fa fa f
4

f fe

f2 f1 fa fa f4 fa fe ft: n -----n

fa fa f1 fa fa fa fa fa : n ----1 n

4 4 fa 4 4 4 4 4: n------- 1
n

4 4 fa fa fa 4 ft f4. n 1
-------

1-n

f
a fa r4 fa fa ft fa

n
fa : n E.-73-:

fa fa 4 fa f fa 4 -----fa: n --t-.-
z n

(b) If we make the following replacements the two tables

will 'be identical except for the arrangement of rows

and columns.

fli e

(c) Yes.

(d) (f3 o fa )I = far= fa

8. (a) 4

(b) 1

(c) 9

9. (a) (f4!)(5) = f4(5) = 4/

(d) 0

(e) 3

(f) 3

q

ire t

fa p

(b) same as (a)
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10.

(c)

1 =

2 =

3 =

(d)())

3°

32

32

= f4(5) = -1/4

4 =.

5 =

6 =

(d) same as (c)

34

35

33

1

2

3

= 5°

=

= 5s

4

5

6

=

=

=

58

52

53

11. Slide Rule construction.

o 6o 70 80
12. 1 =

2 = 21 = 69 = '73 := 87 =

3 = 29 = = 74 = 85 =

4 = 29 64 = 78 = 84 =

5 = 24 = 68 = 79 = 89 =

6 =29 =61 = 77 -83 -108

7 = = 63 = 71 -89 =104
8 = 23 = = 73 = 81 = 10

3

10° (c) (1) 5

109 (2) 1

108 (3) 10

107 (4) 5

108

9 = 28 = = 're =83 =10a
10 = 25 = 65 = 75 85 = 101

Hence, we could use powers of 6, 7, 8 as well as 2 for

our slide rule contstruction.

2.9 Some Theorems About Groups (Time: 5 days)

In 2.9 eight basic group theorems are proved. Take time

with the proofs. Make sure that the reasons for the steps are

understood. A common difficulty is to give an incorrect reason.
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The position should be taken that unless a correct reason is

available frr a statement in a proof the statement should not

be made.

There are a var,.ety of approaches that may be followed in

addition to those taken in the text. Students should be encou-

raged to use their ingenuity in varying the approaches and

methods used in proving these group theroems.

2.10 Exercises

Exercises 5 and 7 are excellent for classroom demonstra-

tions. They demonstrate all of the group theorems presented

in section 2.9.

1. (Z7,+)

(a) (3I)I 41 3

(b) (3 + 4)1 = 01 = 0

31
4 4 + 3 = 0

(c)
(3 4)1 51

41 31 = 2.5 = 3

2. (a o b)/ = b/ o a/ Theorem 8

= a
I 0 ThisThis group is commutative.

3. Let x and y be any pair of elements in the group. We

(z7V01,.)

(3I)I 51

must show thatxoy=y0 x.
(x1)1 (y1)1

x oy=xoy
x o y = (x1)=o(y1)1

= (y/oxI)I

(JOITI)/(ITIox/)/

";()

Theorem 7

Equality is reflexive

Replacement

Theorem 8

Assumption
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(xIoyy
x y =

(yi)I0(xy

-yox
4. (a o aI)o(aI)I = ao(a/o(aI)I)

e o (aI)/ = a o e

(aI)/ = a

5. (a o b)I = (a o b)I

Equality is transitive

Theorem 8

Theorem 7

Associativity

Definition of Inverse

Definition of e

Equality is reflexive.

(aob)/o((aob)o(b/oa/)) = ((aob)Io(aob))o(b/oa/)

(aob)lo(((aob)ob/loa/) = e o (bloat)

(aob)/o((ao(bobI )10aI) bIoaI

(aob)io((aoeloaI) = b/oa/

(aob)io(aoaI) = b/oa/

(aob )io e = bioa/

(aob
)I bIoaI

6. (a) (por)/ = si = s and

pIorI
qor = t

(b) r/op I = roq = s = (por)I from (a)

(c) (pos)I = t, p/os/ =

Associativity

Associativity and

definition of inverse

Associativity and

definition of identity

Definition of inverse

Definition of e

Definition of inverse

Definition of e

r, sIop/ = t therefore

(pos)I g pIosI, (pos)I
p

sIo_I
and many other pairs

will do.

7. (a) aoa=aoaI
= e

(b) aoe=aoeI =aoe= a
(c) aoa/ =ao(aI

)
I =aoa
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(d) aoc =aoc
=boc

(e) coa=coa

=cob

Reflexivity of equality

Replacement

Reflexivity of equality

Replacement

(f) aoc=boc Assumption

a o CI = b o cI Definition of o

a = b Righz cancellation

(g) coa=cob Assumption

c o a' = c 0 b
I

Definition of o

aI = bI Left cancellation

aI o a = bI o a Right operation

e = bI a a Definition of aI

boe=bo(bIo a) Left operation

b= (b o bI) o a Definition of e and

associativity

b = e o a Definition of ID'

b = a Definition of e

a = b Equality is symmetric

(h) (a o b) o b= (a o bI) o b Definition of o

= a o (Job) Associativity

= a o e Definition of bI

= a Definition of e

(i) (a o b) o b = (a o b) o bI Definition of o

= a o (b o bI) Associativity

= a o e Definition of bI

= a Definition of e

61. (j) a o (b o c) = a o (b o cI) Definition of o
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(a o b) o ci

. (a o b) o c

(k) a 6(b o c) = a o (b o c)I

a o (cI o bI)

(a o cI) o bI

Associativity

Definition of o

Definition of o

Theorem 8

Associativity

= (a o 2...P Definition of

(1) (a o c) o c) = (a o cI) o (b o cI)I

Definition of 2
u0I)I

o b1)(a o c1) o

Theorem 8

(a o cI) o (c 6 bI)

Theorem 7

= (a o (cI o c)) o bI

Associativity

= (a o e) o bI

Definition of inverses

(m)

a o b
1

Definition of e

= a o b Definition of o

(a o b) o (c o d) = (a o b/) o (c o dI)

Definition of o

((a o bI) o el o dI

Associativity

= (a o (bI o c)) o dI

Associativity

= (a o (0 o bI) 3 o dI

(S,o) is a commutative

group.
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. ((a o c) o bI) o dI

Associativity

= (a o c) o (bI o dI)

Associativity

= (a o c) o (d o b)I

Theorem 8

= (a o c) o (d o b)

Definition of o

(a o c) o (b o d)

The group is commutative.

(n) (a o b) o (c o d) = (a o bI) o (c o dI)I

Definition of o

(a o b/) o ((dI)/ o c1)

Theorem 8

(a o bI) o (d o cI)

Theorem 7

(a o d) c (cI o b/)

Associativity and

Commutativity

= (a o d) o (b o 0)/

Theorem 8

= (a o d) o (b o c)

Definition of o

8. note a = 0 should be a = 3.

(a) a. 3 + (-3) = 0

b. 3 + (-0) = 3

c. 3 + -(-3) . 3 + 3 = 6
Cf.3
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d g cannot be done since the assumpV.ons are false.

h. (3 + (-q) + 4 = 3

i. (3 + 4) + (-4) . 3

J. 3 + (4 + (-5)) - (3 + 4) + (-5)

k. 3 + (-(4 +5)) . (3 + (-4)) + (-5)

1.

m.

n.

(b) a. 3 x = 1

b. 3 x
1
= 3

c . 3 x = 3 x 3

h, (3 x x 4 = 3

i. (3'x 4) x = 3

J. 3 x (4 x ) = (3 x 4) x

k. 3 x . (3 x ) x 5

1. (3 x ) x
4

= 3 x

m. (3 x x (5 x ) = (3 x 5) x

n. (3 x ?&) x 3; = (3 x 6)

(3 + (-5)) + (5 + (-6)) = 3 + (-6)

(3 + (-4)) + (5 + (-6)) (3 + 5) + (-(4 6))

(3 + (-4)) + ( -(c + (-d))) . (3 + 6) + (-(4 + 5))

2.11 misaapthism (Time: 2 days)

The importance of this section is that it demonstrates

to the students groups that have the same structure.
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Isomorphism provides a means of studying the properties and

proving propositions about unknown groups by examining the

properties of known groups which are isomorphic to the unknown

group.

2.12 Exercises

Exercises 1, 3 (d), and 4, should be demonstrated in

class end the remaining exercises may be handled according

to the teacher's discretion.

1. To show that n --1°--3n is 1-1 from the group (Z,+) into

the group (Q \ (0),o) we must show that f is defined on

Z, which it is, and that if f(x) = f(y) then x = y. In

other word, that if 3x = 3y then x = y. An argument for

this may be, if we o.ssume that 3z = 1 if and only if z = 0,

3x 3y

3
-y

= 3-y

3x3-y

3x-y 3o

3x -y

x - y = 0

x = y

Assumption

Reflexivity

Right multiplication

For all real numbers,

a and b,

3a 3b 3a +b

Replacement 30 = 1

Assumption above

Right addition

(Z,+) and (Q\(0),) are not isomorphic groups as no ele

ment of Z maps onto 2 of Q. For isomorphic groups the mapping

must be onto. f is not onto.

r5
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Stadents may use other elements of Q to show that the

mapping is not onto.

2. (a) The mapping f from Z3 to (e,x,y)

0

1

2

is 1-1 and onto. If the operation + is also

replaced by o, the two tables become identical.

+ 0 1 2 o e x y

0 0 J 2 e e x y

1 1 2 0 x x y e

2 2 0 1 y lyex
(b) Use the mapping shown to display the isomorphism

that converts one table into the other.

o e x y z A

e e x y z ) ( )

x x e z y (a) (a)

y y z ex (b) (b)

z z y x e (a,b) (a,b)

0

(c) Let f be defined by n

(a) (b) (a,b)

(a) (b) (a,b)

( ) (a, b) (b)

(a,b) ( ) (a)

(b) (a) (

( ) x (a) y )

z (a,b)f 3n for n in Z. Every

n in Z has an image namely 3n. Every 3a has a pre-

image, namely a. In exercise 1, we showed that f

is 1-1. Hence, f is 1-1 and onto from Z to
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(3n: n in Z). We most show that f preserves pro-

ducts: that is, for every x in Z and y in Z

f(x + y) = f(x) f(y),

or equivalently that

3x+y 3x 3y

which is the case. (This may be proved by mathema-

tical induction. At this level we assume this law

for exponents.) It now follows, as (Z,+) is a

group, that ((3n: n in Z),) is also a group, for

every property possessed by (Z,+) is imaged by an

analogous property in ((3n: n in Z), ).

It is an operational system: 3x. 3y
3x+y

all x, y in Z.

(3x3y) 3z 3x+y3z 3(x+y)+z 3x +(y +z)

3x3(y+z) 3x(3y3z)

so that we have associativity.

30.3x 30+x
=

3x
=

3x+o 3x3o

for each x in Z, so that 3° serves as the identity

element. The inverse of 3x is 3x because

"23(.3-x 3° and
3-x3x

=
30.

3. (a) As Z4 has 4 elements and Z4 has 5, there can be no

1-1 mapping from Z4 onto Z4. There must be a 1-1

onto mapping between the sets of isomorphic groups.

(b) (4,+) can be generated by the single element 1:

1 = 1, 1 + 1 = 2, 1 + 2 = 3, 1 + 3 = 4,

1 + 4 = 5, 1 + 5 = 0.
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(o,p,q,r,s,t1 has no element corresponding to 1.

Hence, there is no mapping (1-1, onto) that pre-

serves products.

(c) Each element of one group (the Klein 4 group) is

its own inverse. This is rot the case for the

other group. Hence, there is no 1-1 onto mapping

that preserves products.

(d) Suppose (Q,+) and (Z,+) were isomorphic groups.

Let f be an isomorphism between them with Q the

domain and Z the range. Let the pre -image of 1 in

Z be a so that f(a) = 1. Then

1 = f(a)

Note: If a is in Q

fq) tha

then is in Q.

= 2 01)
a

Therefore, Off) 1

But f maps Q onto Z so that all images must be

a
i -2-ntegers. is in Q and has

1
, which is not an

integer, for its image under f. This contradiction

shows that there is no isomorphism between (Q,+)

and (Z,+) so that they cannot be isomorphic groups.

4. (a) Order of (Z4,+; is 4.

Order of 0 is 1.

Order of 1 is 4.

Order of 2 is 2.

Order of 3 is 4.

1:8
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(b) Order of (Za,+) is 5. Order of each element (except

0) is also 5. Order of 0 is 1.

(c) Order of (Z41,1-) is 6. Order of 0 is 1. Order of 1

is 6, Order of 2 is 3, of 3 is 2, of 4 is 3, of 5 is 6.

(d) Order of (Z,,, +) and each element (except 0) is 7.

2.14 Exerciser, (Time: 1 - 2 days)

Exercise 8 may be assigned for homework and a lesson built

around this exercise can be developed the following day. Since

there are many approaches and valid methods of proving exercise

8, the students should be encouraged to provide different proofs.

Before. beginning exercise 10, the teacher should review

the definition of an equivalence relation, presented in Course I.

If time permits, exercise 11 may be discussed in class.

However, because of its degree of difficulty, it should not be

assigned for homework.

1.

2.

3.

(a) and (b) are groups.

51 or 120.

(a) (1 2 3 I

2 4 1 3

(b)

(1 2 3 4\

2 4 1 3)

(c) and (d) are not groups.

(1 2 3 4\

k3 1 4 2)

/1 2 3 4) /1 2

\2 3 4 1/ \ 3 1

3

2

4l

4/

4. (a) 9 (b) 6 (c) 2

5. ((03,+), ((0,41,+), ((0,2,4,61,+), ((0,1,2,3,4,5,6,7,81,+).

Yes.
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6. Solution Set

(a) (s)

(b) (r)

(c) (r)

(d)

(1 3

7. Let the isomorphism f from (Z8,+) to (z7\ (OL) be

0

1 3

(=30)

(=al)

1
2 2

(=32)

3 6
(=36)

4 (=34)
4

5 5 (=35)

0 1 2 3 4 5 1 3 2 6 4 5

0 0 1 2 3 4 5 1 1 3 2 6 4 5

1 1 2 3 4 5 0 3 3 2 6 4 5 1

2 2 3 4 5 0 1 2 2 6 4 5 1 3

3 3 4 5 0 1 2 6 6 4 5 1 3 2

4 4 5 0 1 2 3 4 4 5 1 3 2 6

5 5 o 1 2 3 4 5 5 1 3 2 6 4

It' the symbols +, 0, 1, 2, 3, 4, 5 are replaced, maintaining

order, by e, 1, 3, 2, 6, 4 the first table becomes identical

with the second. Hence, (Ze, +) and (Z7\ COL ) are iso-

morphic.

8. (a o x) o b = c Assumption
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o x) o b) o bI = c o bI Right multiplication

) (a o x) o (b o bI) = c o bI Associativity

( )(a o x) o e = c o bI Definition of b
I

t_==*(a o x)

(a o x)

c o b' Definition of e

= aI o (c o bI )

Left multiplication

(===)(aI o a) o x = a
I
o (c o b

I
)

Associativity

e o x = aI o (c o b
I

)

Definition of a'

<===z) x = a
I
o (0 o bI )

Definition of e

Hence if there is a solution, it must be a

a
I

o (c o b'). Moreover, it is a solution as

a o (a' o (c o bI)) o b . (a o aI) o c o (bI o b)

=eocoe
= C.

9. (a o (bI)I o
aI

Theorem 8

= b o a' Theorem 7

10. It is not an equivalence relation.

transitive, but not symmetric.

It is reflexive and

11. (y o a) o x = y o (a o x)

eox.yoe
x = y.

Thusaox=eandxoa. e; that is, every a has an

inverse element, the only property remaining to complete
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the group structure.

Suggested Test on Groups

I. (P, *) is an operational system that is associative. Its

table is given below. Answer all questions with regard

to the table for (P, *).

ilalblel
di

a

b a b

c d

d

b

d

a

c

(a) The identity element

for this system is

(b) aI =

b
I
=

C
I

=

d
I

=

(c) Is (P, *) a commutative system?

(d) Is (P, *) a group?

(e) If P is not a group, explain why. If P is a group,

list one of the following choices as a subgroup of

P: ((ast)), *), ((b,c), *), ((a,d), *).

(f) Answer each by writing a single element:

d
2

= a3 = b
8

=

II. Compute to show one permutation for each problem:

(1 2 3 4\(1 2 3 4\

(a) k3 2 1 4/ ° k2 3 1 4/ =

2 3 4\
(b) Find the inverse of

3 1 4 2)
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3 1

2 3 4
(c) If X = find X2 . X

2
=

2 4) 2

(d) How many permutations can be made with the elements

of the set (1,2,3,4,51?

III. Consider the mappings: f n + 3

fa: n n

Compute the following within the set, Z:

(a) f1(0) (c) f1(f2(5)) =

(b) f2(-4) = (d) f2(f1(5)) =

IV. Consider the groups of (Zs, +) and (R, o).

R = (a,b,c) and the operational table is:

a b co

a
WM

b c a

b c a b

a b c

(a) Are these two groups isomorphic?

(b) If your answer to "a" is yes, show why they are

(exhibit the mapping and compare the operational

tables). If your answer to nb" is no, show why not.

V. Fill in the proper reasons for the following proof of

Left Cancellation in a group (S, o).

Theorem: Ifcoa=cob, thena= b.
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Statement Reason

1. coa = cob 1.

2. ci o (c o a) = c
I

o (c o b) 2.

3. (c
I

o c) o a = (cI o c) o b 3.

4. eoa = eob 4.

5. a = b 5.

VI. Prove:

(a) (a o bI)I = b o aI

Statement

1.

for a,b in a group

Reason

1.

(b) Prove Right Operation in any group (S,o). Theorem:

If a = b, thenaoc=bo c.
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Answers for Suggested Test of Groups

I. (a) b

(c) yes

(d) yes

(e) (Cbscl, *)

d2 = c; a3 = d; b8 = b

1 2
II. (a) (1 3

(1
(c) y2

3

III. (a) 3

(c) -2

(b) a/ = d

b
I

= b

c

d
I
= a

3

2

4)

4 2
(b)

(1 2

4

3

1 3

2 3 4) (d) 5! or 120

1 2 4

(b) 4

(d) -8

IV. (a) yes

(b) There are 2 possible mappings.

1) o

0

a 1
2

0

a

b

c a b

c a b

a b c

b c a

0

1

2

0 1 2

0 1 2

1 2 0

2 0 1
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2) 0 1 2 o c b a0

C -----0 0 0 1 2 c c b a

b 1 1 1 2, 0 b b a c

a 2 2 2 0 1 a a c b

V. Statement Reason

1. coa=cob 1. Given (or Hypothesis)

2. cI o (c o a) = cI o (c o b) 2. Left operation theorem

3. (cI o c) o a = (c/ o c) o b 3. Associativity of (S,o)

4. eoa=eob 4. Definition of dI or
inverse property (S,o)

5. a . b 5. Definition of e

or identity property

of (S,o)

VI. (a)

1.

2.

Statement Reason

(a o bI)/ =

=

(bI)I
o

aI

b o aI

1.

2.

Theorem 8

Theorem 7

Students may elect to prove theorem 8 in this problem.

But the use of the theorem is sufficient. Such a proof

would require too much time in a one period test.

(b) Statement Reason

1. a = b 1. By assumption

2. aoc=aoc 2. Equality is reflexive

3. aoc=boc 3. Substitution principle

of equality (a = b).
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Chapter 3

Affine Geometry

Time Estimite for Chapter: 18 - 21 days

The main objectives of the chapter are to:

1. introduce the student to an axiomatic affine geometry

based on two incidence axioms and the Playfair version

of the Euclidean parallel axiom.

2. prove theorems formally within this system and strengthen

the notion of proof.

3. show that this axiomatic system can be given varied and

sometimes unusual interpretations, whereby introducing

the student to the notion of a model.

4. exhibit and analyze various finite and infinite models

which despite their differences must nevertheless possess

all the properties expressed by the axioms and theorems

of our axiomatic geometry.

5. introduce the basic notion of parallel projection on

which the idea of a coordinate system for the plane

depends.

6. introduce the student to the concept of a vector.

General Remarks

Many of the exercises call for proofs of theorems. These

should be regarded as a continuation of the content sections.
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They are used in subsequent proofs and applications.

No special form or arrangement of proofs should be

demanded of the students. Proofs presented in paragraph

form should be completely acceptable if the reasoning is

correct. The test of correctness is, of course, that each

assertion made in a proof follow logically from the axioms

and/or theorems previously deduced from the axioms.

Teachers should be careful to avoid discouraging the

student when he submits a proof that is not correct. He should

be praised for those parts of the proof that are sound. It

takes time for a beginner to understand or appreciate the

idea that he may use only properties of points, lines, etc.

which he can deduce logically from the axioms and that he must

avoid drawing conclusions which are based upon the appearance

of a diagram.

If a student's proof or solution to a problem differs from

yours (or ours) do not assume that he is wrong. Have him

explain because his answer may also be correct. Originality

and creativity is a precious commodity to be nurtured and

encouraged - not suppressed.

3.2 Axioms (And a.1 Time: 1 1/2 - 2 days)

Stress that the plane r is a set of points and that lines

are subsets of r. The set 7 and its subsets, the lines, are

assumed to have certain properties which are expressed in the

axioms.
:,9
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The students should learn to state the axioms accurately.

In connection with the definition of parallel lines, be

sure the stud-ants understand that every line is considered

parallel to itself in this context. Here is a good opportunity

to point out that definitions are man-made to serve some

purpose. In the present case defining a line to be parallel

to itself makes it possible to state axiom 3 and certain

subsequent theorems simply, without awkward exceptions.

In connection with the term "affine geometry", stress

that this is a geometry in which our Axioms 1, 2, and 3 hold,

3.3 Exercises

The purpose of these exercises is to clarify and sharpen

the student's understanding of what the axioms assert as well

as what they do not assert.

Exercise 3 affords an opportunity to point out that the

axioms are "incomplete" in the sense that there are questions

which cannot be decided one way or the other on the basis of

just these three axioms. This point will become clearer

when models are studied later. Thus, further axioms will have

to be introduced later in order that the system of geometry

shall have the properties we feel .it should possess.

/9
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Exercise 4 illustrates that although a property may not

be specifically assumed by any one of the axioms, it may be

implied by several of them taken together. Thus the deduction

of theorems from the axioms is anticipated by this exercise.

In Exercise 8, the students may recall that m(AuB) =

m(A) m(B) e m(AnB). This sheds further light on the

question raised there.

Question 10 anticipates the proof of one of the theorems

in a later section. Do not require all students to do this

probl-:m at this time.

3.3 ,Solutions to Exercises)

1. a) Yes. According t Definition 1, line M is considered

parallel to line N even when M = N, i.e., when M

"coincides" with N. In this case M and N have all

their points in common.

b) Yes.

2. Yes. Line m itself certainly contains E and is parallel

to itself.

3. None. (Moreover, neither do they assert that a line

may not contain three points. This question is left

open by the axioms.)
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4. No one of the axioms asserts this fact. (However

it can be deduced from the 3 axioms. This is done

later. See No.10 Sect. 3.5)

5. Axiom lb. (A set that contains at least two points

certain3y contains at least one point.)

6. Axiom 2

7. None. (Note: Axiom 2 implies that there cannot be

more than one such point, but none of the axioms

guarantees that there must be such a point.)

8. Axiom 1 guarantees that each line contains at least

two distinct points but it does not guarantee that

the points in one line must be distinct from the

points in another line. If a set A contains two

members it does not follow that AFB contains four

members because A and B may share members in common.

9. Two distinct lines cannot intersect in more than one

point because axiom 2 guarantees that only one line

can contain two distinct points.

*10. By axiom la, 7 contains at least two lineal call

them m and n. By axiom lb m contains at least two

points; call them A and B. Line n also contains two

points (by axiom lb). At least one of these two

points must be different from either A or B, because

axiom 2 stipulates that there is only one line

containing A and B, namely m. Since n is not the

same line as m, at least one of its points, call it

C, must be different from either A or B. Hence there

ti
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are at least three distinct points, namely, A, B,

and C in plane T.

3.4 Some Logical Consequences of the Axioms (Time: 3 - 4 days)

This section introduces the first few theorems and

definitions involving incidence properties of lines and planes.

The proofs are presented in considerable detail and should be

very carefully discussed in class. The role played by each

axiom (or part of an axiom) should be clearly understood.

Notice that axiom 3 (the Euclidean axiom) is not used in

either of the proofs so Theorems 1 and 2 are strictly incidence

theorems. Subsequent theorems which also require axiom 3 are

affine theorems.

Be sure the student understands the meaning of the terms

collinear, non-collinear, concurrent and non-concurrent.

One suggestion for this section is to ask students to

rewrite the proofs of Theorems 1 and 2 in a "two-column" form,

as an assignment.

3.5 Exercises

Skill in constructing proofs takes time to acquire. Hence

the first two exercises (Theorems 3 and 4) supply most of the

proof and the student is merely asked to supply reasons.

Let the student work on each of these exercises by himself

either in class or via a homework assignment. Then have various

C9
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students present their proofs for discussion, criticism, and

correction of errors. A Special section in each student's

notebook might be reserved for listing the theorems, each

accompanied by a correct proof.

Allow various types of proofs, as noted under "General

Remarks" at the beginning of the Commentary for this Chapter;

encourage indirect, as well as direct proofs.

Allow variations in wording of the proofs so long as

the reasoning is correct. Also, in proving a theorem stress

use of previously proved theorems. This will make for still

further variation in correct (and incorrect) proofs submitted

by students. Scrutiny of such alternate proofs to check their

validity is one of the best ways for a student to grow in

mathematical maturity.

The. students will probably find Exercise 7 quite difficult

at this stage and Exercises 9 and 10 very hard. Nevertheless

let them Ia them. All these theorems should be included in

each student's list with proofs supplied by the better

students, or by the teacher if necessary.

3.5 (Solutions to Exercises)

1. (1) axiom la

(2) axiom lb

(3) axiom 2

2. (1) By axiom la

(2) By axiom lb
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(3) If B and C were the same point then by axiom 2,*

m and n would be the same line (because grand n

also contain point A).

(4) By Axiom 2.

(5) By an axiom, m is the only line containing both

A and B and n is the only line containing both A

and C. The 3rd line cannot contain A, since if

it did, m and n would not be distinct lines.

3. (Theorem 5)

If A is a point in plane r, there are at least two

lines in r, each containing point A.

Proof: By Theorem 4, there is a line, say m in r which

does not contain A. By axiom lb, m contains at least

two points B and C. By axiom 2, there is a line r

containing A and B and there is also a line s containing

A and C, such that r s. (Since if r were equal to s,

B and C would be in r, in s, and in ms so that by

Axiom 2, r = s = m. Then A E m. But this contradicts

the first statement.) Therefore r and s are the

required lines.

4. (Theorem 6)

There are at least three non concurrent lines in the

plane r,

Proof: By Theorem 2 there are at least three points in

plane r, not all in the same line. Call these points

A, B, C. By Theorem 5 there must be at least two

lines m and n each containing A. By axiom 2 there is

SA
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a line A containing points B and C. This line A cannot

also contain A because A, B, and C are non-collinear.

Heroe this line A must be distinct from lines m and n.

By axiom 2, m and n cannot both contain a common point

other than A, and since A does contain A, A, m, n are

not concurrent.

5. (Theorem )

If each of two lines in r is parallel to the same line

in r, then they are parallel to each other.

Proof: If m s and n H s by hypothesis, we must prove

m II n. Suppose m n. Then m n, and m n n contains

exactly one point, say A. (Def. of H lines.) Hence

A E m (where m H s), and A f n (where n H s). Since

we already have m n, we have a contradiction to axiom

3, which says that there is one and only one line con-

taining a given point and to a given line. Hence

m 0 n.

(Theorem 8)

If m is any line in r, then there are at least 2 points

in r which are not in m.

Proof: If m is in ir, by Thoorem 1, there is a point in

ir, say A, not in m. By axiom 3, there is a line, r,

containing ,A and H m. By axiom lb, r contains at least

2 points, A and some other point C. This point C m,

since if C E m, then m 4f r. But that would contradict

the fact that r m. Hence A and C are the required
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points.

We include here two proofs for Exercise I.

7. (Theorem 9)

If A is any point in plane r, then there are at least

two lines in r which do not contain A.

1st Proof: If A is any point in plane y then by Theorem

5, there are at least two lines in r each containing

point A. Call these lines m and n. By axiom lb each

of the lines m and n contains an additional point dis-

tinct from A. Call these points 33 and C, respectively.

B and C must be distinct points because otherwise (if

B = C) m and n would both contain the distinct points

A and B, and by axiom 2, m and n would not be distinct

lines. Since B and C are distinct points, there exists

a line £ in r containing B and. C (axiom 2).

fi

Moreover, by axiom 3, there exists a line r in r con-

taining B, and parallel to n.

Neither r nor £ containstA because: (1) if r con-

tained A then r = n (by axiom 3) and since r also con-

tains B, then r = m (by axiom 2) and hence m = n con-

tradicting m / n; (2) similarly, if 2 contained A,
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then since A contains B, £ = m (by axiom 2) and since

A contains C, t = n (by axiom 2) from which once again

m = n, a contradiction. Finally, to prove that rand

/ are distinct lines we observe first, that t n

(because n contains A while I does not) and second,

that and n both contain C. Therefore 4 n, while

on the other hand r n. Consequently L # r.

7. (Theorem 9)

If A is any point in plane T, then there are at least

two lines in r which do not contain A.

2nd Proof: If A is any point in r then, by Theorem 4,

there is a line in r which does not contain A; call this

line line m. By axiom lb, m contains at least two points,

call them B and C. By axiom 3, there is a line in r

which contains A and is parallel to m; call this new

line n. By axiom lb, there is a point in n

m

other than A; call this, new point D. By axiom 2, there

is a line in r containing B and D; call this line s.

We shall now prove that m and s are two (distinct) lines

that do not contain A.
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First of all m was chosen so as not to contain A.

Secondly, if s contained A, then since s also contains

D, it would follow (by axiom 2) that s = n, and hence

n would contain B (because s contained B). Then since

n m it would follow, by axiom 3, that n = m and thus

m would also contain A (because n contained A)..

This contradicts the fact that m was chosen not to con-

tain A. This contradiction proves that s cannot con-

tain A. Finally, tp prove that m and s are distinct

lines we observe that if m = s, then m would contain

D (because s contains D) and since n m, and n also

contains D, it would follow from axiom 3 that n = m.

But this would mean that m and n are not distinct

lines, and that would contradict the fact that m was

chosen to be distinct from n. Hence m and s are the

required lines.

We include here two proofs for Exercise 8 - one is a

direct proof and the other an indirect proof.

8. (Theorem 10)

If A, m and n are lines in r such that m is parallel to

to n, then if A is not parallel to m, it follows that

2 is not parallel to n.

1st Proof; Since A is not parallel to m, it follows

that A and m are distinct lines and contain a common

point, say A. Since m is parallel to n, it follows

by axiom 3 that
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any other line containing A cannot also be parallel to

n. Hence A is not parallel to n.

8. (Theorem 10)

2nd Proof: A, m, n are lines in r such that m H n.

Assume A m and A Al n. We know A n, since A 4 m

and n H m. Further if A m, then A 1 m and A and m

intersect in some point, call it A. But this contra-

dicts axiom 3 since both A and m would contain A and

be n to n. Hence our assumption is false and A n.

9. (Theorem 11)

If A is any line in plane r and A is any point in r

which is not in line A, then there is a one-to-one

correspondence between the set of all points in A and

the set of all lines in r which contain A and are not

parallel to A.

P9
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Proof: In order to establish the one-to-one corres-

pondence, we must "match" each point of A with a unique

line containing A but not parallel to L, and cm 'ersely

we must match each such line with a corresponding unique

point of A.

/1112$
(1) Let X be any point E i.

Since A is not in A, A and X
, a

are distinct points. Hence,

by axiom 2 there is one and

only one line in r, call it mx, which contains both A

and X. Thus, to'each point X in A there correspond&

a unique line mx which contains A and is not parallel

to L(because it contains a point of to namely X).

(2) Conversely, let m be any

line containing A and not paral-

lel to A. .Since m is not paral-

lel to A, m contains at least

one point of A. Moreover

by Theorem 3 there is only one such point because m is

distinct from A (since m contains A while A does not).

Hence to each line m which contains A and is not paral-

lel to A there corresponds a unique point Xm in A.

This completes the proof.

10. (Theorem 12)

If A is any point in plane r, then there are at least

three distinct lines in r each containing A.

Cn
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Proof: If A is any point in

r, then by Theorem 5 there are

at least two (distinct) lines

in r which contain A: call

these distinct line& m and n. h.

By axiom lb m and n each contain

a point distinct from A: call these points B and C,

respectively. B and C are distinct points because

otherwise (if B = C) m and n would both contain the

distinct points A and B and then, by axiom 2, m and

n would not be distinct lines. Since B and C are dis-

tinct points, there is a line r in r, which contains

both B and C. r does not contain A because if it did,

then since r contains B we would have r = m (by axiom

2) and since r contains C we would have r = n...(by

axiom 2 again.. Therefore we would have m = n con-

tradicting the distinctness of m and n. Now by axiom

3, there exists in r a line s which contains point A

and is parallel to r. This line s is distinct from

both m and n because each of these lines is not paral-

lel to r (each contains a point in r gts well as a point A

not in R) while s is parallel to r. Hence s, m and n

are three distinct lines in r, each containing A.

3.6 A Non-Geometric Model of the Axioms (Time: 1 - 2 days)

The example given here has been constructed with great
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care. It describes a "non-mathematical" situation which.

actually turns out to be startlingly mathematical! As the

student studies the models in this section and in the next

two sections, he should gain a deeper understanding of the

power and value of abstraction in mathematics. Some of the

models tn this section and section 3,8 maybe omitted with

a good class.

3.7 Exercises

All of the exercises in this section should be covered.

Exercises 1 - 8 give excellent practice in interpreting and

in applying the theorems of our axiomatic geometry to the

commando squad model. Exercise 9(a) (Theorem 13) should be

added to the students notebook list, along with a correct

proof. Exercise 9(b) throws further light on the two pre-

ceding exercises.

3.7 (Solutions to Exercises)

1. Theorem 1 translates into: For each team in the com-

mando squad, there is at least one commando who does

not belong to that team. [This can be re-phrased: No

team includes all of the squad.]

Theorem 2 translates into: There are at least three

commandos in the commando squad who do not belong to

the same team.

(19
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2. Theorem 4 translates into: For each commando in the

commando squad there is a team to which he does not

belong. [This is equivalent to: no commando belongs

to all the teams.]

3. No. Theorem 6 asserts that there exist at least three

lines in r which do not contain a common point. This

translates into: There exist at least three teams in

the commando squad which do not have a commando in com-

mon.

4. Theorem 8 translates into: For each team in the commando

squad; there are at least two commandos in the squad who

are not on that team.

Interpreting Theorem 10 we obtain the following: If

A, m and n are teams in the commando squad such that

m has no commando in common with n, then if t has a

commando in common with m it follows that L has a com-

mando in common with n.

6. Theorem 11 translates as follows: If A is any team in

the commando squad and if A is any commando who is not

a member of team L, then there is a one-to-one corres-

pondence between the set of all commandos in A and the

set of all teams which contain A and also contain a mem-

ber of t.

Now these teams, each of which contains A along with

one member of team t, are distinct teams (because A is

not a member of L). Since there is one such team for

r.
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each member of A, the number of these teams must be the

the same as the number of commandos in £. However,

there is one more team containing A, in addition to

these teams, namely the "parallel" team (guaranteed

by axiom 3) which contains A but does not contain

any members of Thus there is actually one more

team containing A than there are commandos in A.

Note: In this argument, A can be any commando in the

squad, because for each such man, Theorem 4 guarantees

that there is always at least one team to which he

does not belong (see Exercise 2 above).

7. Requirements la, lb and 2 are satisfied. Requirement

3 is not satisfied because no two of the teams are com-

pletely distinct. Every pair of two teams has a com-

mando in common.

8. The following six teams will fill the bill:

Team 1: (Jones, Kelly)

Team 2: (Jones, Levy)

Team 3: (Jones, Mason)

Team 4: (Kelly, Levy)

Team 5: (Kelly, Mason)

Team 6: (Levy, Mason)

9. (a) (Theorem 13)

There are at least four points in plane r, no three of

which are collinear.

Proof: By Theorem 2, there are at least three



92

non-collinear points in plane r; call them A, B, C.

By axiom 2 there is a line m in Ts containing points

A and B and a line r, containing points B and C.

m r because A, B, C are non-

collinear. By axiom 3, there

is a line I, in r, containing

A such that t r and there is

a line n in Ts containing C such

that n H m. Now m and r are dis-

tinct lines containing point B. Hence certainly m 4 r

and therefore m L (because L 11 r). But m and t both

contain point A, hence L 4 m. But m H n, so it follows

from Theorem 10, that L n, i.e., A and n both contain

a (unique) point D in L.

A, D, and C are non-collinear since A and D are on A,

A H r, and C is on r. Since. m A (proved above) it

rollows that D, A and B are non-collinear. Since

n A- but L r, it follows, by Theorem 10, that

n r. Consequently D, B and C are non-collinear.

Thus the four points A, B, C, D have the property that

no three are collinear.

(b) Theorem 13 proves that every model which satisfies

the requirements of axioms 1, 2 and 3 must contain at

least four "points ".

Since the commando squad of Exercise 7 contains only

three "points" (i.e., commandos) it cannot satisfy all
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requirements. Observe also that the existence of a

fourth point depended on axiom 3 so evidently the third

requirement fails to hold for this model.

In Exercise 8, the commando squad consists of exactly

four men. The addition of a fourth "point" makes it

possible to fulfill the requirements but only by

organizing the teams ("lines") so that no three com-

mandos (points) are on the same team (no three points

are collinear).

3.8 Other Models of the Axioms - Finite and Infinite
1Time: 3 - 4 days)

This section explores models in greater depth. It

introduces four-point and nine-point geometries along with

interesting interpretations of these finite geometries.

It also presents an infinite model in which the student

begins to get a preliminary glimpse of "analytic geometry".

However the "plane" defined here is still a far cry from the

real euclidean plane of ordinary analytic geometry.

3.9 Exercises

Exercises 1 - 10 provide further experiences in setting

up models, interpreting the theorems and applying them to

these models. Exercise 11(a) (Theorem 14) should be added

to the student's notebook list of theorems and proofs.

Problem 90 should be starred and can be done better when
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studying Chapter 6.

3.9 (Solutions to Exercises)

1. (a) Assignment of Players to Tennis Matches

Match Players Assigned

No. 1 Al, Bill

No. 2 Al; Carl

Nol 3 Al, Don

No. 4 Bill, Carl

No. 5 Bill, Don

No. 6 Carl, Don

(b) Using his first initial to name each player we

have the following model:

Pioneer Club: (A, B, D, C)

Doubles Teams: [A,B), (A,C), 0,D), [B,C), (B,D),

(C,D)

Tennis Players: A, B, C, D

This is a four-point geometry with plane P = Pioneer Club

line = doubles team

point = tennis player

(c) Axiom 1(a) translates into:

The Pioneer Club is a set of tennis players and it

contains at least two doubles teams.

Axiom 1(b) translates into:

"Each doubles team in the Pioneer Club is a set

of at least two tennis players."

frl
. 4
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Axiom 2 translates into:

"For every two tennis players in the Pioneer Club,

there is one and only one doubles team in the Pio-

neer Club containing these two tennis players."

Before translating axiom 3, define "parallel"

doubles teams to mean teams that are either iden-

tical or completely distinct (disjoint). Axiom 3

then translates into:

For every doubles team m and tennis player E in

the Pioneer Club, there is one and only one doubles

team in the Pioneer Club containing E and parallel

to m.

A glance at the model in (a) or (b) shows that the

axioms are satisfied.

(d) (1) parallel lines = doubles teams that have

no tennis player in common or are iden-

tical.

(2) collinear points = a set of tennis

players all on the same doubles team.

(3) non-collinear points = a set of tennis

players not all on the same doubles team.

(4) concurrent lines = distinct doubles teams

which have a tennis player in common.

Note: In this particular model there are three pairs of

parallel doubles teams; any two tennis players are collinear,
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but three or more tennis players are non-collinear and

there are four sets of concurrent lines.

(e) Theorem 1 translates into:

For each doubles team in the Pioneer Club there

is a tennis player in the Pioneer Club who is not

on that team.

Theorem 2 translates into:

There are at least three tennis players in the

Pioneer Club who are not all on the same doubles

team.

Theorem 3 translates into:

Two distinct doubles teams cannot have more than

one tennis player in common.

Therrems 2 and 3 are trivial because a doubles

team consists of exactly two tennis players.

(f) Theorem 5 asserts that each point is contained in

at least two distinct lines (hence each player will

participate in at least two matches). Theorem 9

asserts that for each point there are at least two

lines which do not contain A (hence for each player

there will be at least two matches in which he will

not participate).

2. (a) Yes; yes; no

(b) No. Every two distinct lines have a point in com-

mon.
041
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(c) non-collinear

(d) Theorem 1: valid

Theorem 3: valid Depend only on axioms 1 and 2

Theorem 5: valid

Theorem 8: not valid
Depend on axiom 3

Theorem 9: not valid

Theorem 1 valid (in the vacuous sense that there
are no parallel lines)

3. (a) Plane r: (A,B)

Line : [A,B1 (note: only one line)

Points : A,B

Axiom la is not satisfied.

Axiom lb is satisfied.

Axiom 2 is satisfied.

Axiom 3 is obviously satisfied because plane r does not

contain a line and a point not on that line and

the only case is when the point is on the line.

(b) See proof of Theorem 13 (Exercise g(a) in section 4.7)

4. (a) There are actually 10 lines.

(b) Each line contains exactly 2 points.

(c) (1) not parallel

(2) not parallel

(3) parallel

(4) parallel

(d) yes

(e) no. For example, there are two lines containing

point C, namely (A,C) and [B,C), both of which are



ti

L

- 98

parallel to line (D,E).

(f) Two.

5. Any four-point model (e.g. the tennis club model of

exercise 1 above) shows this.

6. (a) Points in plane r: (0,0), (0,1), (1,0), (1,1).

(b)

(0,4

(c)

(1.)(4

Equations of lines in r are:

lx + Oy = 0

A: Ox + ly = 0

£3: 1X Oy = 1

A
4

: OX ly = I

As: lx + ly = 0

L: 1X ly = 1

(d) Lines which correspond are:

:

44
:

13:

14:

As:

A8:

((0,0),

((0,0),

((1,0),

((0,1),

[(0,0),

((1,0),

(0,1)1

(1,0) )

(1,1)1

(1,1))

(1,1)1

(0,1))

Note: 1 + 1 = 0
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(049 J (p)

(a) Points: (0,0), (0,1), (0,2)

(1,0), (1,1), (1,2)

(2,0), (2,1), (2,2)

(So

(c) Li: lx + Oy = 0

£3: 1X + Cy = 1

A2 : lx + Oy = 2

A4 OX ly = 0

As: Ox + ly = 1

£e: OX ly = 2

: 1X ly = 0

As: lx + ly = 1

£o: 4- ly = 2

Lis 2x + ly = 0

Ali : 2x + ly = 1

Ai*: 2x + ly = 2

(
(d)

!)
Ai = ( (0,0), (0,1), (0,2))

£2 = ((1,0), (1,1), (1,2))

£3 = ((2,0), (2,1), (2,2))

22 = ((0,0), (1,0), (2,0))

As = ((0,1), (1,1), (2,1))

As = (( ,2), (1,2), (2,2))

A, = ((1,2), (2,1), (0,0))

= ((1,0), (0,1), (2,2))

A9 = ((1,1), (2,0), (0,2))

1110 = ((0,0), (1,1), (2,2))

Aii = ((0,1), (1,2), (2,0))

Ai2 = ((0,2), (1,0), (2,1))

9
c..
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There are 12 more equations but they are equivalent to

the above equations. Multiply each equation by 2 and you

will get these equivalent ones.

(e)

Note: The open circles don't represent new points. Each

open circle represents the same point as the

correspondingly labelled heavy dot. This diagram

is a slight variation of Figure 14 in the text with

a more symmetrical placement of the open circles.

8. (a) lx + Oy = 0: solution set: all ordered pairs of the

form (0,Y)

Ox + ly = 0: solution set: all ordered pairs of the

form (x,0)

These two "lines" represent the y-axis and x-axis

respectively. The "plane"r=ZxZcertainly

contains both these "lines", i.e., both solution sets.

(b) There are many points that can be used to show thin.

(1) x - y = 0: solution set contains the "points"

(0, 0) and (1, 1)

I
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(2) x + y = 2: solution set contains the "points"

(0, 2) and (2, 0)

(3) 2x y = 0: solution set contains the "points"

(0, 0) and (1, 2)

(4) 3x + 4y = 5: solution set contains the "points"

(3, -1), and (-1, 2)

(1) We first seek an equation of the form

ax + by = c

where a, b, c are 3 .tegers and a, b are not both

zero, and such that (0, 0) and (1, 1) are both

in the solution set. Substituting (0, 0) for

(x, y) we obtain 0 = c. Substituting (1, 1)

for (x, y) we obtain

a + b = c

Hence a + b = 0

. a .-b

Hence any equation of the, form ax - ay = 0 where

a 0 will fill the bill. Furthermore all

equations of this form are equivalent to the

simpler equation

x - y = 0

i.e., they all have the same solution set namely

((0,0), (1,1), (-1,-1), (2,2;,

This solution set represents the unique "line"

determined by the two points (0, 0), and (1, 1)
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(2) For the points (4, -1) and (2, 0) we obtain

4a - b = c

2a = c

.% 4a - b = 2a

b = 2a (where a / 0)

Hence the equation must have the form

ax + lay = 2a. (a / 0)

or equivalently

x + 2y = 2

The solution set (in integers) for this equation

represents the unique "line" determined by

the two given points.

(d) Since the planer=ZXZisaset of lattice points

we seek "lines" of lattice points for which the

Euclidean parallel axiom (axiom 3) fails. Such

"lines" are indicated in the diagram.

y.alte4 0

.C: ox + y = 1

m: ox + y = 0

n: 2x - y = 0

1 n5

4'1114(1

m and n are distinct lines

containing the point (o, o).

Yet m and n are each "parallel"

to A.
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9. (a) -Yes. In fact the illustrations used in 8(b) are

equally applicable in Q x Q because all ordered pairs

of integers are contained in Q x Q as well.

(b) No. The counter example in 8(c) is no longer

valid. in Q x A because although line m is still

parallel to line A, line n is no longer parallel to

L. In fact lines n and £ intersect in the "point"

(1/2, 1) as is readily seen by solving the two

equations.

*(c) This problem should not be assigned until after

Chapter 6, Section 6.15, problem 6. Then it can

be done by. the point-slope form of an equation. An

alternate solution is given here.

Axiom 3 asserts that for every line m and every

point E in the plane r, there is one and only one

line containing E and parallel to m.

To verify this for the "line" m defined by

3x + 4y 5

and the "point" E (2, 1) we first observe that

point E is not contained in line in because (2, 1)

does not satisfy 3x + 4y = 5.

Next we seek anequation

ax + by c

where a, b, c are rational numbers, a and b not

both 0, and such that this equation is satisfied by

(2, 1) but is not satisfied by any of the solutions

1 116
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of 3x + 4y = 5. Substituting (2, 1) in the equation

ax + by = c we obtain

ax + by = 2a + lb

or a(x - 2) + b(y - 1) = 0. (This is clearly

satisfied by (2, 1)). Now from the equation

3x + 4y = 5 we obtain

-x = -5--3-

qubstitute in the new equation:

a(fgLiAE - 2) + b(y - 1) = 0

a(
4 + b(y - 1) = 0

a(-1 - 4y) + 3b(y - 1) = 0

(3b - 4a)y = a + 3b

Now if 3b - 4a p( 0 this equation can be solved for

y. Hence, since we want no solution for y, we must

stipulate that

3b - 4a = 0

4
i.e. b = 38

where a may not be zero because otherwise both a and

4b would be zero. Substituting b = 3a in the equation

a(x - 2) + b(y - 1) = 0 we obtain

a(x - 2) + 4a(y - 1) = 0

and since a 1 0, this equation is equivalent to

(x - 2) + 4.(y - 1) = 0

3(x - 2) + 4(y - 1) = 0

3x - 6 + 4y - 4 = 0

3x + 4y = 10

_rs
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This equation defines the desired line. To check'

that it contains point E we substitute (2, 1) for

(x, Y):

3(2) + 4(1) = 10

10 = 10

To check that it is parallel to line m we observe

that the equations

3x + 4y = 5

3x + 4y = 10

are clearly inconsistent. No ordered pair (x, y)

can satisfy both equations because 5 t 10.

(b) By (2) there are at least two committees. One of

these has exactly 3 members; call them A, B, C. The

second committee has one member from each other

committee. But by (1) this second committee must

also contain another member D and this other member

D must be different from B and C because of (3).

Thus there are at least four people in the family.

(Note that we did not use (4) in this proof but we

did use it to set up the model. (4) requires that

E and D form a committee and also C and D.)

108
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(c) Each line is parallel to itself, but no two

distinct lines are parallel because (3) stipulates

that each line contains a point from each other

line.

11. (a) (Theorem 14)

There are at least six lines in plane P.

Proof: By Theorem 13, there are four points in plane

P no three of which are collinear. Call these

points A, B, C, D. Since these points are distinct

every two of these points determines a line by

axiom 2. We can select two points out of the four

in six ways:

(A, B) (A, C) (A, DI

(B, C) (B, DI (C, DI

The six lines thus determined must all be distinct,

because no three of the points are collinear.

(b) The four point geometry exhibits exactly six lines.

3.10 Equivalence Classes of Parallel Lines (Time 1 - 4 days)

Before teaching this section it will be helpful to review

with the students Section 8.15 of Course 1 (Equivalence

Classes and Partitions). The particular equivalence classes

introduced here are families of parallel lines. A brief

descriptive term for each family is the phrase "parallel

class of lines" or simply: "parallel class". Many mathemati-

cians prefer to call these equivalence classes "directions".

1 09
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Thus any pair of parallel lines are said to be "in the

same direction", meaning "in the same equivalence class".

In the text we have avoided using these other descriptive

terms, but the teacher may choose to use one or more of

them, if he feels it will be helpful.

Have the student interpret the equivalence classes in

the various models he has studied. The exercises include

a few such interpretations.

3.11 Exercises

Exercises 1 and.2 are useful for reviewing the three

requirements for an equivalence relation (reflexivity,

symmetry and transitivity). Exercises 3 and 4 provide

practice in interpreting equivalence classes in specific

models.

Exercise 5 (Theorem 16) should be added to the theorem

list. Exercise 6 is a nice application of Theorem 10,

although it can be proved without using Theorem 10.

3.11 (Solutions to Exercises)

1. (a) no (b) yes (c) no (d) yes (e) no

(f) no (g) no (h) no (i) yes

The equivalence classes are:

(b) The subsets which contain all living people who are

a given age

(d) The sets of books having a specified number of pages

1 10



-108-

(i) The sets of students in a particular grade

2. (a) Reflexivity: Every book has the same author as

itself.

(b) Symmetry: If book x has the same author as book

Y, then book y has the same author as book x.

(c) Transitivity: if x has the same author as y and

y has the same author as z, then x has the same

author as z.

(d) The equivalence classes are the sets of all books

by a particular author.

3. Equivalence classes for tennis club model of Exercise 1

Section 3.9:

((A, B), (C, D))

((A, C), (B, D))

((A, D), (B, C))

Note: These equivalence classes are the parallel lines

for the relation, "is parallel to."

4. (a) For the nine point geometry,



(b)

tl A, B, C"

A,D,GI
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{1A,E,I1

112,E221

IB,FGI

A,F H

IC,D,H

CB, II

5. (Theorem 16)

There are at least three distinct equivalence classes in

plane ir.

Proof: By Theorem.12, if A is a point in plane r, Mien

there are at least three distinct lines r, s, t in 7, each

containing A. Each of these lines determines the

equivalence class of all lines in r parallel to that line.

Call these equivalence classes Er, Es and E
t

respectively.

These equivalence classes are distinct, in fact disjoint,

because if, say, Er and Et both contained a line A, then

r and t would be distinct lines each containing A and

each parallel to I in violation of axiom 3. Hence there

are at least three distinct equivalence classes in

plane ir.

6. No; because if D contained n, then D would have to

contain every line parallel to n and therefore would

have to contain m, which it does not.
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3.12 Parallel Projection (Time: 2 - 3 days)

The ideas introduced in this section are basic for

much of the subsequent work in coordinate geometry. The

section brings together a number of ideas the student has

encountered in various other parts of the course. These

include the notions of mapping, one-to-one correspondence,

inverse mapping and equivalence class. These ideas, applied

here, lead to the fundamental concept of a parallel projection

from a line n onto a line m, on which much of geometry can

be based.

Two interesting corollaries of Theorem 17 are: (1) all

lines in P have the same number of points: and (2) if one

line in P has infinitely many points, then every line 7 has

infinitely many points. These corollaries are proved as follows:

Proof of (1): Let m and n be any two lines. By

Theorem 17, there is a one-to-one correspondence between

the points of m and the points of n. Hence m and n have

the same number of points.

Proof of (2): Suppose a line m, in r, has infinitely

many points. If n is any other line in 7, there is

a one-to-one correspondence between the points of m

and the points of n (by Theorem 17). Therefore, since

m infinitely many points, n must also have infinitely

many points. Care should be taken when speaking of a



mapping Dm that the domain is stated. Sometimes the

domain is the entire plane r, and sometimes it is

restricted to a line n.

3.13 Exercises

These exercises provide practice with parallel

projections and aim at discovery of some of the properties'

of parallel projections. The exercises are intended to be

chiefly of an experimental and exploratory nature with the

students formulating conjectures about parallel projections.

No formal proofs should be called for in this set of exercises.

3.13 (Solution to Exercises)

1. ! 1 Image points
B

t 1 %

\ e

%111% %

li t B', C', D', E'li

I t %

m

indicated by A',

(E = E')

A' i

C

2. (a) The point where n intersects m.

(b) Each point of m maps on .to itself.

? r r
/ / I3

(a)

e D
(b) A and B, respectively

(c) They are inverse mappings.

// /
1

1

111



4. (a)

(b)

(1)

(2)

(3)
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(Di)m o (D = A"

7/1

(D2)m 0 (D1)n = A"
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(D2)n 0 (D1)m = A"

4. (c) Similar diagram with another point 13 on L.

Composition of parallel projections appears to

be non-commutative.

5. (a)

6.

(a)

Yes. In this case the composition of the

parallel projections appears to be a parallel

projection.



rt,
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Pt.yll A. filoet\ 111\\ 111
1

(a)

/ I,\ 1i

Ans. No

1i
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3.14 Vectors (Time: 2 - 3 days)

In a sense, this section is a digression because it uses

properties of a plane r which go beyond those prescribed in the

axioms. It introduces the student to the notion of a vector,

via the concept of "directed segments". In Course III these

ideas will be defined precisely. For the present an

intuitive approach via a physical model will be sufficient.

In this connection a review of the notion of translation is

helpful. Another helpful notion is that of a composition of

translations, an idea which is closely related to addition

of vectors.

Give the students lots of practice in drawing diagrams

showing the various operations on vectors:

a,
.4

a + b,
.4 .4

a -b

2a, 3a, (-2)a

The arrow notation used here is temporary. Other notations for

vectors will be introduced in Course III. Discuss non-

mathematical interpretations of vectors such as forces,

velocities, accelerations, price-vectors, etc. (See Kemeny,

Finite Math, or Richardson, Funds.nentals of Math).

3.15 Exercises

These exerciFas provide graphical experiences with

directed segments. Emphasize that the directed segments

rap:meat vectors. They are not themselves vectors. For

1 I
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Exercise 3, please note: For convenience and easier

checking of students, work, give students the following

directed segments to use in doing problem 3.

3.15 (Solutions to Exercises)

1. (a) one

(b) two

(c) two

(d) two

(e) three

2. (a) three

(b) AB =ED

BC = FE

CA =W.
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a
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(b) The sum vectors appear to be the same, illustrating

the ASSOCIATIVE LAW.

(c) Similar diagrams.

5 (a)

(b)

ir-kaPle

(c)
ir

b. (a)

(c)

(b)

(d)

1 29
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(e)

( f )

e.0.4 .10 eqp
he 0. t + C 4b ar,

The result in (f) introduces the concept of the zero vector,

5, and inverse vectors.

7 (a) (b)

(c)



8. (a)

(b) 7-1>+ 0>=

> o`>=b + 0 b
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> > >0 + 0 = 0

+ = 0

"O>+ T>=. T>

'6>+ E>= E>

General Rule: o>+ 5>. 5>+ 6>=. 5>for all vectors 5>

9. By reasoning from properties of translations:
so.

Since a vector a represents a translation there exists a

unique inverse translation x which maps each point on to

itself. The composition of these two translations is the

zero translation: a+x=x+a=0

3.16 Summary (Time: 2 - 4- days)

The axioms are listed here but not the theorems. However,

each student may have built up a list of the theorems in his

notebook.

3.17 Miscellaneous Exercises

Exercises 1, 2 and 3 are not difficult and provide a

good review of concepts developed in this chapter. Exercise

4 is an exploratory one leading to generalizations in

9 4
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Exercise 5. Proving these generalizations will probably be

difficult for the average student. However the better

students should find these results interesting and challenging.

It is worth noting that there are still unsolved problems

related to the ideas in Exercise 5.

Reference: Prenowitz; Jordan. Basic Concept of Geometer,.

3.17 (Solutions to Miscellaneous Exercises)

1. By axiom la, plane r contains at least two (distinct)

lines, call them m and n. By axiom lb, line m contains

at least two (distinct) points, call them A and B, and

line n contains at least two (distinct) points, call them

C and D. If C and D were both also in line m then by

axiom 2, n would be the same line as m. Hence at least

one of the points C and D, let us say C, is not in m.

Therefore, A, B, C are three non-collinear points in P.

By axiom 2 there is a line containing each pair of points

(A, B), (Ap C), and (B, C) we already know that m

contains (A, B) and n contains (A, C) and that m and n are

distinct lines. Let L be the line containing (B, C).

I, must be distinct from either m or n for otherwise A,

B and C would be collinear. Since I, already contains

point B in m and point C in n, L cannot contain any other

point in either of these lines for otherwise by axiom 2

I, would be the same line as one of them. Therefore, lines

m, and n are non-concurrent.

1°9



-123 -

2. (a) axioms 1 and 2 are true for this model but axiom 3

is false.

(b) Three: (F, C), (F, D) and (F, E).

(c) (A, C), (A, D) and (A, E)

3. Referring to the proof of Theorem 13 (see Exercise 9 (a)

in Section 3.7) we obtained four lines in ir,m, n, A and r

and four points A, B, C, D such that:

m II n, / II R

A and B are in m

C and D are in n

A and D are in A

B and C are in r

and no three of the four points are collinear. It follows

that A, m, n and r are distinct lines (otherwise the four

points would be collinear). Moreover no three are

concurrent because two out of any three of the lines are

parallel.

4. (a)

No. of points
in each line

No. of lines
containing
each point

No. of points
in plane r

No. of
lines in
plane r

(4-pt. geom 2 3 4 6

(9-pt. geom 3 4 9 12

4 5 16 20

PIP

(b) k k + 1 k2 k (k + 1)

196
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5. (a) Proof: (Using Theorem 11--See Exercise 9, Section

3.5)

Since one of the lines in plane P, call it line A,

contains exactly k points, and by theorem 1 there is a point

A in P which is not in line A, there exists a one-to-one

correspondence between the set of all points in A, and the

set of all lines in P which contain A and are not parallel to

A. (by Theorem 11--see note above.) there exists, by Axiom

3, a line m containing point A and .parallel to line A. This

line m must also contain another point B, by Axiom 2, and

B fit A. There also exists a one-to-one correspondence between

the points in A and the lines in P which contain B and are

not parallel to A. Now consider a line, q, containing point

A and one. of the k points contained in A. By the same

Theorem 11, there is a one-to-one correspondence between the

set of points in q and the set of all lines in P which

contain B and are not parallel to q. There are k such lines

in P (the k lines containing B and the points of A, minus the

one line containing B and the chosen point of A, plus the line

m, containing B and A) and hence there must be k points on

line q, and all lines of plane P.

Note: See figure next page



(b) Proof: (This follows from Theorem 11, also)

Let A be any point in P. By Theorem 4 there is a

line m in P which does not contain A. By the

result just proved in part (a), line m has exactly

k points. By axiom 2 for each of these k points there

is exactly one line in P containing that point and

point A. In addition to these k lines each containing

A and a point of m, there also exists in plane P

(by axiom 3) exactly one line which contains A and

is parallel to m. Since every line containing A is

either parallel or else not parallel to m, this

accounts for exactly (k + 1) lines in P containing

A.

(c) By part (b) there are (k + 1) lines in plane P

containing any given point A, in P. Let B be any

(so
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other point in P (distinct from A). By axiom 2,

there is exactly one line in P, containing both A

and B. This line must be one of the (.k + 1) lines

that contain A. In other words, each point B in

plane P, other than A, is contained in exactly one

of the (k + 1) lines through A. Each of these

(k + 1) lines contains (k - 1) points other than A.

Hence plane P contains (k + 1)(k - 1) = k2 - 1

points other than A. Therefore plane P contains k2

points, including A.

(d) First Proof: Since each line in P contains exactly

k points, (by part a) and each of these k points lies

on exactly k + 1 lines (by part b), there are

exactly k (k + 1) lines in plane P.

Second Proof: Since plane P has k
2
points (by part

c) there are k
2

kt2 - 1) pairs of distinct points

in P. (To form all possible pairs of points, choose

any one of the k
2

points for the first and any one of

the remaining (k
2

- 1) for the other. In the

k2 (k2
1) choices, each pair appears twice--as

A, B and B, A for example. Hence, k
2

(k
2

- 1) will
2

be the number of pairs.) Each of these pairs

determines a line in P, but these lines are not all

distinct. In fact for every set of k points which

are collinear there are exactly k - 1) pairs

of distinct points all of which determine the same

line. (See reasoning above.) Hence the actual
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number of distinct lines in P is:

k
2
(k

2
- 1)

77-- k(k + 1)
k(k - 1)

2

Note: You will have to show students that

k
2

- 1
k
2

- 1 = (k - 1) (k + 1) and hence

= k + 1

Sample Test Questions

I. True or False

(a) If line m is parallel to line n then m and n have

no point in common. (m and n are not necessarily

distinct.)

(b) In the plane 7, if m n and if line A, in 7,

contains a point of m, then A contains a point of

n.

(c) Every model which satisfies axioms 1, 2, 3 must

contain at least six lines.

(d) In every finite model which satisfies axioms 1 2,

3 there are exactly the same number of lines

containing any given point as there are points on any

given line.

(e) If A is any point in plane it there are at least two

lines in r which contain A and at least two lines in

r which do not contain A.

II. If m and n are lines in 7, under what circumstances would

1,90
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you say that

(a) m and n are parallel

(b) m and n are in the same equivalence class

III. Explain what is meant by each of the following:

(a) D
m

(Assume the domain is the plane, y)

(b) Em under Dm [alternate: D (E)]

(c) m n

(d) aRb, if R is a relation

(e) anb = 0

IV. A proof of a simple theorem is given below with all the

reasons omitted. There are 5 steps to the proof. On

your own paper list the numbers 1 to 5 and supply the

reason that fits the corresponding statement.

Theorem: In 7T if m is any line and E is any point not

in m, then there are at least three lines

containing E.

.E

e- m

Proof:

(1) m has two points, call them "A" and "B".

(2) There is a line containing E and A, call it "r",

and a line containing E and B, call it "s".

(3) There is a line containing E which is parallel to

m, call it "t".

(4) Line t is distinct from lines r and s.

(5) Lines r and s (EA and EB) are distinct.
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V. Let R be a relation defined on all pairs of lines in r

as follows:

x and y are in the relation R

if and only xfly / 0

Decide whether or not R is an equivalence relation and

explain. (Be liberal with partial credit for good

thinking.)

VI. Relying only upon the axioms, prove the following:

Let m be a line in equivalence class D. Prove that

there is a line distinct from m that is also in D.

(Note: You may wish to let students rely upon the

axioms and previously proven theorems.)

Answers to Sample Test Questions

I. (a) False (b) True (c) True (d) False (e) True

II. (a) Either m = n or en . 0

(b) m n

III. (a) D
m

is the parallel projection that maps plane r onto

line m in the direction of D.

(b) E
M

is the image of E in m under a parallel projection

Dm.

(c) m and n are parallel, that is, either m = n or

nflm = 0

(d) (a,b)ER, or a and b are in the relation R, or a is in

the relation R to b.

(e) a and b have no points in common, or a and b are disjoint.

1 29
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IV. 1. Every line in r contains at least two points.

(Axiom lb)

2. There is one and only one line containing any two

points. (Axiom 2)

3. For every line m and point E tnere is one and only

one line which contains E and is parallel to m.

(Axiom 3)

4. r and s intersect m while t does not.

5. If EA and EB were the same line then points E, A, B

would be in AB or m. As E is not in m, EA = EB.

V. R is not an equivalence relatio- because we could have

distinct lines m, n, s such that mils / 0, snn 1 0, and

mfln = 0. In other words, we could have (m,$)ER,

(s,n)ER, and (m,n)fR.

- -
- - - - D-

VI. We have proved that for every line m there is a point,

call it E, that is not in m. By axiom 3 there is a line,

call it n, parallel to m and containing E. If E is not

in m, n m. But m and n are in the same equivalence

class because m n.

191
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Note: If-you require that students rely only upon the

axioms, they will have to prove that for every line m

there is a point E not in m. (Theorem 1).
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Chapter 4

Fields

Time estimate for Chapter: 14 days

General Comments:

This chapter has two major objectives ---.to extend the

study of abstract operational systems to fields and, in the

process, to deepen student insight into the algebraic struc-

ture of the number systems. Since the additive and multipli,-

cative structures of a field are groups (with a persistent

pro.dem involving o, the additive identity) the important

theory of this chapter is that which concerns the interaction

of the two operations via the distributive property.

The most interesting results are Theorems 5, 6, 11, 12,

and 15.

Theorem 5. a o=oa= o
Theorem 6. a b= o iff a= o or b= o

Theorem 11, (-a) b = a (-b) = -(a b)

Theorem 12.

Theorem 15.

a (b - c) = a b - a c

a -a

Since these are mostly familiar facts in (Q, +, ), it is

important to use the finite fields (zp, +, ) in illustrations

to show that the concepts have validity and usefulness in

other settings.

Though the development of the theory of fields and ordered

fields is rigorous --- in the sense of formally stated axioms

and carefully proved theorems --- students should not be

'195
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expected to memorize proofs to any particular theorems.

There will be opportunities to discuss concepts of logic and

proof, illustrating ideas from Chapter 1, but keep in mind

the fact that almost all topics in the chapter will be deve-

loped further in future courses. The key sections of the pre-

sent chapter are 4.4, 4.10, 4.12, u.13, and 4.15. Sections

4.8 and 4.9 are not essential, although your class might find

the use of fractions in finite fields fascinating.

The entire chapter should not take longer than teaching

days to cover (exclusive of Review Exercise/ and Chapter test.)

The Review Exercises may be assigned during, at end, or in

future spiralled assignments at the teacher's discretion.

4.1 What is a Field? (Time: 1 day)

The particular collection of properties used to define

field is chosen to get a two-fold system that comes as near

to being two interacting groups as possible and because three

Xey number systems (two yet to come) have field structure.

The non-symmetry of distributivity is forced by the behavior

of o, the additive identity element, under multiplication.

After the students have had experience with Theorems 4 and 6,

it might be well to consider the following disproof which

illustrates why addition does not distribute' over multipli-

cation.

1 + (1 o) (1 + 1) (1 + o)

would imply 1 + o = (1 + 1) 1

1.99
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would imply 1 + 0 = 1 + I

would imply o = 1.

The need for different symbols for additive and multipli-

cative inverses is obvious: -3 / 31. The choice' of a-1 for

multiplicative inverses might need some selling.

4.2 Exercises

1. Standard names

(a) Additive inverses

(1) - -2g

(2)
37

(3)

(b) Multiplicative inverses

3
(1) 7

(2) - 4

(3)
8
7

2. Computations

(a) 1-4

(b)

(c) 4:1

(d)

3. Computations

(a) o

(b) o

(4)

( 5)

(7)

(8)

-
5

-

(6)
31
7i5 (9) 0

(4) - 2 (7)

(5) (8)-

(6)
(9) none

-

(e) -

(f) -3-by

(g) 4-6

(h) - 83
240
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4. Standard Names

(a) Additive inverses

(1) o

(2) 5

(3) 4

(b) Multiplicative inverses

(1) none

(2) 1

(3) none

5. Standard Namer

(a) 4

(b) 2

(c) o

6. Fields?

(4) 3

(5) 2

(6) 1

(4) none

(5) none

(6) 5

(d) 5

(e) 3

(f) none

g) 4

(h) 3

(i) o

- 1 1 1
(a) no inverses (There does not exist a '

-IV" "nor 2' 3..

(b) no inverses (g) yes

(c) no + inverses (h) no inverses for 2,3,4,6,8,
9,10

(d) no + identity
(i) no inverses for 2,4,6

(e) yes
(j) no inverses for 3,6

(f) -no inverse for 2
(k) no inverses for 2,4,6,8,5

7. 30 = 2, solvable in (Ly,+,) where 0 = 2

8. (f), (h), (i), (J), (k)

9. Let a = p, and b = q. Then a b = n which is o in (Zn,+,).

10. Yes. (Students should demonstrate the field properties

which hold in this system.) ,
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4.3 Getting Some Field Theorems Painlessly (Time: 2 - 3 days
for 4.3, 4.4, 4.5)

Brush over this quickly, but point out the dividend of

group theory and the translation of results from general to

specific case.

4.4 Trouble with 0

There is no way, and perhaps expectedly so, to avoid the

complications introduced when docile little 0 is asked to mul-

tiply. Emphasize the way that addition (0 is really only dis-

tinguishable as the additive identity), multiplication, and

distributivity come together in Theorem 5 (a 0 = 0). Stress

that Theorems 5 and 6 can be restated compactly as follows:

a, b e F, a b 0 iff a 0 or b = 0

Although the solution of quadratic equations is considered

in more detail in later sections (4.6, 4.13), the teacher may

want to give several quadratic equations at this time as an

immediate application of Theorems 5 and 6. For example:

x(x + 3) = 0

(x + 2)(x = 0 etc.

4.5 Exercises

1. Standard Names

(a) 1

(b) 10

(0) 3

1 1

(d) 3

(e) 3

(f) 5



2. Group Theorems

(a) For all a in S,

(b) For all a,b in S

(c) For all a,b in S

3. a A 0 implies a-1 ex

-
a (a b) = a

1

implies (a-1 a) b

or 1 b=l c
or b = c

Standard names

(a) -21

(b) -21

(c) -21
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(aI)I

(a * b)' bI a'

,x*a=bhas unique solution x = b * al.

ists.

(a c) Left operation which

= (a
1

a) c Associativity of

Definition of inverses

Definition of identity

5. Restatement of Theorem:

If a f (Fs+1.) and a X 0 then a2 X 0.

Proof; (Indirect Method) Suppose a2 = 0. We show that

this leads to a contradiction.

a2 = 0

aa = 0 Definition of a2

a= 0 or a= 0 Theorem 6 (a = b)

But a X 0 by hypothesis.

Hence there is a contradiction and our supposition that

a2 = 0 must be false. Therefore a2 X 0.

6. Computation

(a) 1

(b) 4

(c) 2
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7.

8. Proof: a+b=aimpliesa+b=a+ o

implies b = o by cancellation

(Theorem 4.)

9. Proof: (b + c) a = a (b + c) Commutativity for

= a b + a c Distributive Property

= b a + c a Commutativity for

10. If n = p q, there are elements a,b in Zn and not equal

to o such that a b = o. But by Theorem 6 this cannot

happen in a field. Thus (Zn,+,*) must not "",)e a field.

4.6 Subtraction and Division (Time: 3 days for 4.6 and 4.7)

This section develops several important theorems and,

therefore, time should be spend on this section so that the

students will understand the proofs and applications to alge-

braic manipulation.

Examples 3 and 4 should be done in class as the students

may have difficulty doing this on their own. Many more

examples of this type should be done in class before doing

section 4.7.

The teacher may wish to expand on this development by

following section 4.7 by 4.13, 4.14, 4.15, 4.16. After com-

pleting the solution of quadratic equations, the teacher can

return to 4.8 and complete the chapter.



4.7 Exercises

1. Standard Names

(a)

(b)
5

(c)

2. Standard Names

(a) 6

(b) 1

3. Simplifications

(a) x

(d) - 2 x

4. Solution Sets

(a) tg) (d) (o, 24)

(b) to, (e) (-3, i)

(c) (0, (f)

Proofs.

(b) a - o = a + (-o) Definition of "..."

= a + o Definition of inverses

= a Definition of Additive Identity

(c) o - a = o + (-a) Definition of "-"

= -a Definition of Additive Identity

(d) a - b = a - c implies a + (-b) = a + ( -c)

Definition of ."-"

-139-

20

(d) 14 + 15x
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implies (-b) = (-c) Left Cancellation

implies 1(-b) = 1(-b) Left Operation

implies (-1)*b = (-1)c Theorem 11

implies b = c Left Cancellation

(e)

a - b = c

a = c + b

6. (a)

(b)

(e)

implies a + (-b) = c Definition of "-"

implies a + (-b) + b = c + b Right Operation

implies a + o = c + b Definition of Inverses

implies a = c + b Definition of Additive
Identity

implies a + (-b) = c + b + (-b)

Right Operation

a + (-b) = c + o Definition of Inverses

a + (-b) = c Definition of Additive
Identity

a - b = c Definition of "-"

a +a=a a 1 Definition of 4"

= 1 Definition of inverses

a 4. 1 = a 1
-1

Definition of IV

= a 1 Definition of Inverse
of Multiplicative
Identity

= a Definition of Multipli-
cative Identity

1)efinition of 4"

= a
-1

Definition of Multipli-
cative Identity

1+ a= 1 a
1

(d)

a 4 1 3 = a + c implies a b-1 c1

Definition of 4"
1111
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b
-1

= c Left Cancellation

(b
-1

)

-1
= (c

-1
) Right Operation

b = c Theorem 7

(e)

a f b= c implies a b1 = c Definition of "4."
-

a b
1 b=c.b Right operation

a = c b Definition of Inverses

7. Proof:

a (b - c) = a (b + (-c)) Definition of "-ll

= a b + a (-c) Distributivity

= a b + -(a c) Theorem 11

= a b - a c Definition of "-li

4.8 Fractions in Fields (Time: 1 day for 4.8 and 4.9)

This section affords an excellent opportunity to give

students much needed computational practice with fractions.

Therefore, even though this section is starred, it is recom-

mended that time be devoted to exercises 4,9 either as a class

lesson or through the homework. The teacher may also wish to

supplement this section with additional problems involving

fractions from a standard algebra text.

4.9 Exercises

1. Standard Names

(a) 5 5



(c) 2

(d) 2

2. Standard Names

(a) 2

(b) 2

3. Proof:
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(e) 3

(f) 3

(e) 4

(f) 4

= (d.132) (b.d1) Definition 4

= (d.d1) (b.131) Associative
and Commutative Property
of Metiplication

4. Computations.

(a) 4

5. (b) -(=i) = -(1)

= 6

6. Proof:

7. Proof:

= 1 1 Definition of Inverses

= 1

(b) 4

= -1 = 6 6(c) - =

=6

(d) = -6 = 1

(11) = -(( -a)° b-1)

= a b
-2

a

- (g) = -(a b-2)

= (-a) b-1

-a
b

1 /15

= . 1

Definition 4

Theorem 11 and Theorem 1

Definition 4

Definition 4

Theorem 11(b)

Definition 4
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4.10 Order in Fields (Time: 2 - 3 days for 4.10 and 4.11)

The questions of which familiar fields are orderable has

been avoided intentionally (and deceitfully) until after some

ordered field theory is developed because the rational number

system is the ordered field that students have met. The real

numbers, of course, will come in Chapter 5 and order will be

the basic notion there.

In the present section the number of formal theorems has

been limited to keep the topic manageable. The most important

property in the section (in adO.ition to the four basic axioms)

is Theorem OF - 3(b)

a > b and c < o ac < bc.

The importance and use of this theorem should be illustrated

in the solution of inequalities Such as .3x >,12 Students will

observe that except for OF - 3(b), there is a parallel between

solution techniques for equations and inequalities. This will

be used again in Section 4.13.

In the exercises of Section 4.11, numbers 9 and 10 should

be covered; the results will be used later.

4.11 Exercises

Must do: numbers 9 and 101 (The iff indicates the rever-

s.ahility of each step, so that two theorems are proved simul-

taneously.)



1. Correct symbols

(a) > (b) < (c) > (d) > (e) >

(f) < (g) > (h) < (i) > (j) >

(k) <

2. Equivalent inequalities

(a) x > -
11

(b) x > -8 (c) x2 < 4
7

or -2 < x < 2.

3. Proof: a < o iff o < o - a Theorem 1 (a)

iff o < -a o is the Additive Identity

4. 'a < b iff o < b - a Theorem 1 (a)

iff o + -b < b + -a + -b OF 03

iff -b < b + -b + -a Additive identity and
Commutative Property of +

iff -b < o + -a Definition of Inverses

iff -b < -a Additive Identity

5. Proof: a>bimpliesa+c>b+ c
OF 03

c >dimpliesb+c>b+ d

Thus a+c>b+d by o - 1.

6. Proof: a>oimpliesa+b>o+ b
OF 03

b >oimplieso+b>o+ o

Thus a + b > o by o - 1.

7. Proof: a > o and b > o implies a b > o b .OF 04

implies a b > o Theorem 5

8. Proof: (1) a
2

= o implies a = o Theorem 6

(2) a < o iff o < -a Theorem 1 (b)

o < -a implies o (-a) < (-a)(-a) OF 04

implies o < aa = a
2

Theorem 5 and
Theorem 11 (c)

1/1")
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(3) a>oimpliesaa>a o OF 04

implies as > o Definition of
aa and Theorem 5

Note the proof here is by cases.

Find t so that a = o < a < b and o < t < 1.

(a) For given a and b.

(1) t =2 (2) t =5

(b) rule: t =

10. Archimedean Property

(a) Find n

(1) n > 25

(2) n > 37001

(3) n 341

(b) Rule: n >

(3) t

x if x > o
11. For all x, Ix' . This exhausts cases

-x if x < o

by o- 2
iff ix > o

12. For all x, x is . This exhausts
negative lx < o

cases by o - 2.

1
4.12 How Many 2Orderable Fields? (Time: day or independent

reading assignment)

Although reaction to the non-orderable proof for (z1, +,.)

might be a desire to throw out the axioms 01 - 04, in an opera-

tional system context it is useful to have an order relation



- 114.6-

that connects to the operations. Order as an independent con-

cept can be and is defined somewhat differently in other situ-

atioas.

4.13 Equations and Inaquations in (A,+,,<) (Time: 2 days for
4.13 and 4.14)

As mentioned previously, this section can be done in con-

junction with sections 4.6, 4.7, and 4.15. Examples 1 and 2

of this section illustrate in detail how the principles of

logic and fields are used in the solving of equations. How-

ever, while students should be able to explain each step of an

equation, they should not be expected to show all the details

in their solution. You might want to give students more prac-

tice in solving equations than is contained in the exercises.

414 Exercises

1. Equivalent expressions

(a) 8x + (-7)

(b) -15x +

(c) x

2. Solution sets

(a) f-
4

(b) 37)

(c)
106

(d) )

I

(d) -6x3 + 7 -§

(e) - 32 x + 60

(f) 92ca + (-17)x
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3. Solutions of inequations

(a) x <4 or solution set S = (x: x E Q and x <

(b) x > or solution set S = (x: x E Q and x >

(c) x > etc.

(d) < x

(e) x < 14

4. Solution sets

(a) (28) (b) (12) (c) (8) (d) (8)

5. 4737 cycles.

4.15 Solving Quadratic Equations (Time: 2 days for 4.15 and 4.16)

The first two sentences of this section will cause con.

fusion. In the first place, students have indeed encountered

equations involving symbols such as x2 (See, for example, Sec-

tion 4.7, ex. 4(b)). Furthermore, the second sentence gives

the erroneow impression that equations involving symbols like

701 are called linear equations. The difference between linear

and quadratic equations should be made clear.

This section covers only quadratic equations that are

easily factorable over the rationals. More general techniques

appear in Course III, Chapter 5 on "Polynomials."

Again you may want to supplement the exercises on fac-

toring and equation solution to meet the needs of your class.

Remember, however, the topics will be touched again in a

future course.
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4.16 Exercises

1. Products

(a) x* + 18x + 77 (f) x2 - 30x + 176

(b) + (g) x2 - 9x2

(c) xe - 6x + 9 (h) x2 + x - 20

(d) x2 + I4x - 176 (i) 12x2 + 23x + 10

(e) x2 - 14x - 176 (3) 10-

2. Factored form

(a) (x + 5)(x + 4) (d) (x - 5)(x + 4)

(b) (x - 5)(x - 4) (e) (x - 10)(x + 2)

(c) (x + 5)(x - 4) (f) (x + 2)(x + 10)

3. Solution sets

(a) (0, 111

(b) (I,

(c) (0, - 41

4. Solution sets

(a) [-3, -51

(b) (4, 21

(c) (-13, 21

(d) (-3)

5. Solution sets

(a) (4)

(b) (0, 13)

(c) i)

(e) (3) .

(f) (6, -21

(g) 23

(h) (4, 3)

(d) (-3)

(e) [53

1F1
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6. Solution sets

(a) -2 < x < -1

(b) x < -7 or x > 2

7. Solution sets

(a) (2, 9)

(b) (9, 10)

8. Solution sets

(a) (-4, -

(b) [2, -

14.18 Review Exercises

1. Computations

(a) .6 (b) 3 (c) 0

2. Computations

(a) -

(b)

3. Proofs

(a) -(-a) = a -(-(-a)) =

(b) ab = ac implies a-1

implies 1b

implies b

(c) (x - a)(x b) = (x +

= (x +

(c) -5 < x < 5

(d) < x < 1

(c) (3, 5) Answers to
questions in

(d) (5, 6) Note: Yes, 6 No

(c) ( - -1)

(d)

(d) 5

-a by S P E
- 1

= a .ac Left Operation

= 1c Definition of Inverses

= C Definition of Multipli-
cative Identity

(-a))(x + (-b)) Definition of "-I'

(-a))x + (x + (-a))(-b)

Distributive Property

1 r;)
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= x2 + (-a)x + (-b)x + (-a)(-b)

Distributive Property

= x2 - ax - bx + ab

Theorem 11(a), (c),

and Definition of "-"

(a) follows from (c) when b = a.

4. Proofs:

(a) a < b implies a + b < 2b

implies SP < b

(b) a < o and b > o implies ab < bo

implies ab < o

(c) Note: Before assigning this exercise, you should

prove that 1 > 0 in an ordered field.

Indirect Proof: Suppose I- $ 0, then by Trichotemy

property either
1 = 0, or

1
< 0. Since o has no

a a

multiplicative inverse in (F, .) 0. Suppose

1 1
< 0, then by 4(b) above, alic < 0 which implies

1 < 0. This is a contradiction. Therefore 1
> 0.a

5. Solution sets

(a) )

(b) (34)

(c) C± Ti 3

151

(d) (0, 4'0

(e) (-8, -9)

(f) (-3, -2)
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Suggested Chapter Test

1. Determine which of the following statements are true and

which are false where a, b, c, d are any elements of a

field.

(a) ab = 0 implies a . 0.

(b) a + (va) = (a + b)6(a + c).

(c) -(a-b) = a(-b).

(d) / 0.

(e) -(a - b) = -a + b.

(f) ath asc implies b c.

2. Determine which of the following statements are true and

which are false where a, b, c, d are any elements of an

ordered field.

(a) aak 0

(b) -a < a

(e) a > b implies ac > be

(d) a < b and a < c implies b < c

3. Calculate standard names for each of the following in

(z110+,-).

(a) 9-1 (e) (3 2-1)-1 (e) -(8-1)

(b) -(7 - 8) (d) -8 51.(7 - 10)

4. Prove: For all a, b, c in field (F,+,) if c 1 0, then

(a + b) e = (a c) + (b c).

5. Prove: For all a, b, c in ordered field (F,+,,<), if

a < b then there is c > o in F such that a + c = b.

6. Find the solution set of eAch of the following open

154
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sentences where the domain of "x" is (Q,+,).

(a) 7(x + 2) = 8x = 3

(b) 7x2 - 3x = 0

(c) 4x2 - 9 = 0

(d) x2 + llx + 24 = 0

(e) x2 - 5x - 4 =
(f) 7x + 5 < 3 - 4x

Answer Key for Chapter Test

1. (a) False

(b) False

(c) True

(d) True

(e) True

(f) False (This would be true iff a , 0).

2. (a) True

(b) False

(c) False

(d) False

3. (a) 5

(b) 1

(c) 8

(d) 3

(e) 4

(0 6

155
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4. a, b, c E (F,+,) and a / 0

(a + b) c * (a + b) c
-2

Definition of "4."

-
(c 3) (a + b) Commutativity for

* (c a) + (c b) Distributive Pro-

perty of over +

* (a c.1) + (b
2

) Commutativity for

* (a + c) + (b c) Definition of division

). Y a, b, c E (F,+,.,<) and a < b

a < b * a + (-a) < b + (-a) Right Operation

o < b + (-a) Definition of Inverses

Let c = b + (-a)

Then a + c = a + [b + (-a)] S P E

= a + [(-a) + b] Commutativity for +

= [a + (-a)] + b Associativity for +

= 0 + b Definition of inverses

= b Additive Identity

Then a + c = b

6. (a) (17)

(b) (0,

(c) LE -I)

(d) (-3, -8)

(e) (1, 4)

(x: x E Q and x < 11)

r70
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Chapter 5

The Real Numbers

Time. Estimate for chapter: 14 days

Part I of this chapter is designed to motivate the need to

extend the ordered field of rational numbers (Q, +, 0, <) to the

complete ordered field of real numbers (R, +, °A <). The motivation

is essentially geometric; that is, (Q, +, 0, <) is shown to be

inadequate to express the length of every line segment. In

order to overcome this inadequacy, the measuring process is

examined and is seen to produce a set of rational numbers, each

of which may be viewed as an approximation to the length of the

segment being measured. (One of these numbers may, indeed, be

the length.) Two important points emerge from the general

discussion:

1) The length of a line segment is the least upper bound

of the set of rational numbers which arises from the

measuring process.

2) Some sets of rational numbers arising from the measuring

process do not haw rational least upper bounds;

thert*fore, (R, +, °, <) is introduced as an extension

of (Q, +, 0, <) so that every set of rational numbers

produced by the measuring process will have a least

upper bound. In fact, the real number system (R, +, 0, <)

is characterized more generally by the Completeness

Property:

Every non-empty set of real numbers which is

bounded from above has a least upper bound.

157
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5.1 (Time: 2 days)

This section provides an algebraic example, illustrating the

inadequacy of (Q, +, °) to solve all the equations we might

encounter. The proof that the solution set of x' = 2 is empty

in (Q, +, ) depends upon the Unique Factorization Property (UFP)

of the natural numbers. Since this property was last covered in

Chapter 11 of Course I, a chapter which was read independently by

many students, it will have to be reviewed at this time. Have

students speculate about how the number of factors of a given

prime p contained in the complete factorization of n is related

to the number of factors of p contained in the complete

factorization of no. Include the possibility that n contains zero

factors of A. Some students might be encouraged to read the more

standard proof that A is irrational which appears in last year's

experimental edition of Course

The number of exercises

and most students should be

5,2 Answers to Exercises

in this chapter is absolutely minimal

expected to try each one.

0 factors of 31. (a) 20 = 2' 5;

(20)' = 24 5'; 0 factors of 3

(b) 42 = 2 3 7; 1 factor of 3

(42)* = 2' 3' 7'; 2 factors of 3

(c) 2250 = 2 3' 59; 2 factors of 3

(2250)' = 29 34 56; 4 factors of 3

(d) 270 = 2 39 5; 3 factors of 3

(270)' = 2' 36 59; 6 factors of 3

158
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(e) 891 = 3° 11; 4 factors of 3

(891)2 = 3° 112; 8 factors of 3

There are twice as many factors of 3 in the complete

factorization into primes of n' as in n. Thus, n° must

contain an even number of factors of 3. This applies not

only to 3, but to any prime p.

2. (a) i. Suppose $2 = 3, p, q E 2, q A 0. Then
a
= 3 and

132 = 3q2. pa contains an even number (possibly 0) of

factors of 3 in its complete factorization into primes.

Likewise, q2 contains an even number (possibly 0) of

factors of 3. Thus, 3q2 contains an odd number of factors

of 3. By the Unique Factorization Property, we cannot

have p2 = 3q2. Thus, there is no rational number whose

square is 3.

ti. Suppose (t)2 = 5, p and q E Z, q A 0. Then fr = 5

or p2 = 5q2. p2 contains an even number (possibly 0) of

factors of 5 in its complete factorization into primes.

Likewise, q2 contains an even number (possibly 0) of

factors of 5 in its complete factorization. Then 5q2

contains an odd number of factors of 5. By the UFP, we

cannot have p2 = 5e Thus, there is no rational number

whose square is 5.

iii. Suppose Oda = 6, pa q E Z, q A 0. Then q2r 6 or

p2 = Oe = 2 3e. Apply the same reasoning as in (1)

above.

(b) Suppose $2 = 4 p, q E Z, q A 0

then fil: = 4 1 F-4
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then pa = 4q3 = 23 q'

pa contains an even number of factors of 2.

q5 contains an even number of factors of 2.

Thus Oce contains an even number of factors of 2.

Thus pa = kqa. Therefore the solution set of x3 = 4

is in (Q, +,

3. (a) (+5, -5) (b) (+5, -5) (c) (+15, -153 (d) (03

(e) 0

4. (a) [1.4, 1.41) (b) (1.410 1.414) (c) (1.73, 1.732)

(d) (1.73, 1.7321

5.3 (Time: 1 day)

This section relies on the Pythagorean property which many

students are seeing for the first time. They should be reassured

that this relationship will be proved in a subsequent chapter. In

this discussion, it becomes apparent that (Q, +, ) is not adequate

to satisfy all our geometrical needs; that is, we cannot express

the length of every line segment with a rational number once a

unit length has been selected. The importance of a unit length

must be stressed. For example, we might take the diagonal in

question and represent that by one unit. Thus, we would have a

rational number to express its length. However, in terms of this

chosen unit, the length of a diagonal of a new square whose side

has this unit length would then not be a rational number.

The discussion of the measuring process may be difficult to

understand with the assorted number of diagrams and possibilities

included. The ideas are easy; in fact, they are much easier to
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express orally than in writing. A set of rational numbers emerges

from measurement; this set may be finite or infinite. Let students

speculate about the consequences of these possibilities. Remember

that if the process ends, the length is a rational number but

that the converse of this statement is not true. A segment may

have a rational length (3) while the measuring process applied to

the segment may produce an infinite set ((0, .3, .33, .333,...)).

The student cannot really see, at this point, that the measuring

process may not end. A possible explanation is that if the process

does end, the length must be a rational number. However, we

already know that certain segments do not have rational lengths.

5.4 Answers to Exercises

1. (a) (6, 6.1)

6 segments each of length 1 cm.

1 segment of length .0 cm.

(b) (0, 0.3, 0.32)

0 segments of length 1 cm.

3 segments each of length TO. cm.

12 segments each of length To cm.

(c) (47, 47.5, 47.50, 47.503)

47 segments each of length 1 cm.

5 segments each. of length lid cm.

0 segments of length Tou cm.

3 segments each of length -10100. cm.
(d) (2, 2.1, 2.15, 2.153, 2.1539, 2.15398)

2 segments eac)b, of length 1 cm.

1 segment of length cm.
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5 segments each of

3 segments each of

9 segments each of

8 segments each of

1
length rou cm.

length ..---
1 m

i000 (3-6

length ------10,000 cm.

length 00,000 cm.

2. (a) 3.728 or any other rational number greater than 3.728.

(b) 1 or any rational number greater than 1.

11702(c) 1.72 or any rational number x so that x : 51 .

(d) Any rational number.

3. (a) 3.728 (b) 1 (c) l (d)

4. (a) a = 4 (b) b = 24 (c) c = 25

(e) a = 8

5. (a) (1, 2, 31

(d) (1, 2, 31

(b) (1, 2, 3,...333

5.5 (Time: 2 days)

None exists at this
time

(d) None

(c) (1, 2, 31

This section is extremely important. It introduces the

following definitions:

1. upper bound

2. least upper bound

3. length of a line segment

Several examples of finite sets which arise from the measuring

process should be presented. In each case, the length is known

to be the largest rational number in the set. This number is

clearly the least upper bound of the set. Formal proofs for this

fact, though very easy, should not be presented. At this time,

we should not complicate something that students will see very

easily.

1R9
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The imrortant thing is to make a strong case for the least

upper bound as being a reasonable candidate for the length of a

line segment. You will have to rely on the diagrams and discussion

of the measuring process to get this across. You might ask

students to speculate about the existence of a least upper bound

in (Q, +, <) for each set of rational numbers arising from the

measuring process. The case of the diagonal of a square discussed

in Section 5.3 might allow some students to see that a rational

l.u.b. does not always exist. What do they suggest be done to

overcome this difficulty?

5.6 Answers to Exercises

1. (a) Any rational number x so that x 4

(b) Any rational number

(c) Any rational number x so that x Z 1.9

(d) There is no upper bound

(e) Cx E Q : x > 31

(f) fx E Q : x Z 11

2. (a) 4 (b) There is none (c) 1.9 (d) None

(e) Cannot say (0 None exists

3. (a) 2 (b) (c) 7.145 (d) 1.6668

4. (a) If A is bounded from above, there is an r E Q so that

x r for each x E A. Likewise, there is an rt E Q so

that .x r' for each x E B. Let p = max (r, r'). Then,

for each a E A U B, aKp. Thus, pis an upper bound

for A U EL

(b) Since A is bounded from above, there is an r E Q so that

63
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xKrfor eachxEA. But, ifyEAnB, thenyE,A

and y < r. Thus, r is an upper bound of A fl B.

Notice that the boundedness of B is not needed.

5. Let a E A. Since x is an upper bound of A, a < x. But

x < y. Thus, by transitivity of "<", we have a < y. Thus,

y is an upper bound of A.

6. Since x and y are both least upper bounds, each is an upper

bound. By definition of x being a 1.u.b., x S y. By

definition of y being a l.u.b., y x. Thus, x = y.

5.7 (Time: 1 day)

This section illustrates the various significant cases which

might arise from the measuring process. The first case is very

easy and the student is probably convinced already that in the

finite case, the least upper bound is clearly the length. We

must honestly admit that we do not need any special process (l.u.b.)

to find the length of a line segment in the event that the measuring

process does end. The least upper bound is really needed in the

event that the measuring process produces an infinite set of

rational numbers, each approximating the length in question. The

1
sketch of the proof that y is the l.u.b. of (0, 0.3, 110.__,...)

is a good introduction to a proof by induction. In fact, the

reason that this demonstration is called a sketch rather than a

proof is that a complete induction argument is not presented. The

sketch will be difficult for most students.

The student sees much more clearly now that for certain sets

of rational numbers arising from th suring process, there are

1
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no rational least upper bounds. Ask the student again to guess

what can be done to overcome this problem. Also ask him why we

want each of these sets to have a least upper bound.

5.8 Answers to Exercises

1. (a) .3 (b) .33 (c) .333 (d)

2. (a) (1, 2, 3, 4, 5, 61 (b) [1, 2, 3,...661

(c) (1, 2, 3, 4, 5, 6) (d) (1, 2, 3, 4, 5, 6)

3. 0, o.6, 0.66

4, The length is a rational number. If the measuring process

produced the set (k, ka%, kialaa,...kalas...anl, then the

least upper bound would be ka02,...ar which is a rational

number.

5. (a) .6 (b) .142857142857 (c) .222 (d) .475

(e) .125

5.9 (Time: 2 days)

The real number system is introduced, in this development,

so that we can measure the length of every line segment. Thus,

every set of rational numbers arising from the measuring process

must have a least upper bound in (R, +, , <). This conclusion

has been reasonably motivated in the previous sections of the

chapter and should not cause too much trouble for the student.

However, we jump to a more general, more powerful statement

rather quickly, as expressed by the Completeness Property:

Every non-empty set of real numbers which is bounded from

above has a least upper bound.
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The Completeness Property is one of the essential differences

between the rationals and the reels and should receive considerable

emphasis. Do not expect students to grasp this quickly and they,

themselves, should be told that this property, though seemingly

simple in statement, expresses one of the most difficult

mathematical concepts. This is just a first introduction to the

notion of completeness; do not attempt to exhaust it.

5.10 Answers to Exercises

1. (a) W, Z: Q, R (b) W, (c) W: Z, R (d) W, Z, Q, R

2. (a) irrational (b) rational (c) neither (d) rational

(e) rational (f) irrational

3. Assume a b is a rational number; that is, there are integers

p, q where q A 0 and a b q*

Since b is a non-zero rational number, there are integers e

and f where e A 0 and f A 0 and b=

Thus, a 1= fi or a =

Since e A 0 and q A 0, then e q A 0. This means that a is

a rational number. However, we were given that a is an

irrational number. Thus, our assumption is false and we

conclude that a b is an irrational number.

4. Consider x E R where x3 2.

x is irrational, but x x = x3 = 2. Thus x x is a rational

number. Also consider x3 = 2, y2 . 8 .> xPya . 16, (xy)3 16,

xy = 4

5. If x is a rational number, there are integers p and q where
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q A 0 and x = &. If y is a rational number, there are integers

a and b where b A 0 and y Thus, x y fi I =

Since q A 0 and b A 0, then q b A 0. We see that x y is

a rational number.

6. (a) .4139 (b) .3384888 (c) the numbers are equal

(d) .36444 (e) the numbers are equal

7. (a), (c), (e).

5.11 (Time: 2 days)

In general, two real numbers can be ordered in terms of their

infinite decimal representations in the usual way, by comparing

them digit by digit until they disagree. The modification of

this procedure for certain rational numbers is presented in this

section, but not discussed at length. The teacher should be aware

that this modification is meant to accomodate rational number

decimal representations which have a bar "-" above a zero. (.230).

In such a case, there are two distinct decimal representations for

the same number (.230 and .2297). Since this is characteristic

only of certain rational numbers, perhaps it should have been

pointed out in Course I, Chapter 12 on the rational numbers.

Students should not think that the extension from (Q, +, ) to

(R, +, ) necessitated this modification.

Because of the reordering of chapters, tLe definition of

the square root of a number and the symbol ".P' appear for the

first time in this chapter. Unfortunately, this complicates

matters somewhat but consider the following example as representative

of what we are trying to get across.

1) if and only if ta = 2.
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4. Assume 4 + IA is a rational number; that is, say thereare

integers p and q where q A 0 and 4 + 3,J2 = 4.

Then, 347= - 4 = or ,R .

But p - 4q and 3q are integers; since q A 0, then 3q A 0.

This means that ,X is rational which we know is not true.

Thus, the assumption is false and we conclude that 4 + 3,ff

is an irrational number.

5. (a) 4 (b) 5 (c) 7 (d) 1 (e) 12

6. (a) 1.4142... (b) .333... or 1' (0) 3.1415...

(d) 6.1616... (e) 1.783 (e) no least upper bound

7. (a) 3 (b) 2 (c) 5 (d) (e) 6 (e)

(g) (h) 0

8. (a) 2 3 . 6 (b) 4 2 = 8 (c) 9 6 = 54

(d) 11 8 = 88 (e) 0 4 = 0 (r) 1 5 = 5

(g) = 2 (h) = 4

9. Consider E Q. Since a > 0 and b > 0, then 7i> 0.

There is a positive integer N such that N Thus, Na > b.

10. Given x is a positive rational number. Let 1 be the other

rational number. By the hypotheses, there is a positive

integer N such that N 1 > x. Thus N > x.

5.13 (Time: 3 days)

The purpose of this section is to indicate that the field

properties of (Fs +, <) will help in understanding the arithmetic

necessary to.handle the irrational numbers under various operations.

The student will also gain some practice to develop the skills in
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2) AJ is the 1.u.b. of a set of rational approximations to

an element x in the set: (x:x E R and x2 = 2).

3) By the Completeness Property, if is a real number.

4) We name A by using the approximations in this set. The

more approximations we take, the greater the accuracy

by representing J.
The Archimedean Property is stated in two seemingly different

forms in this section. The second form,

If a and b are positive real numbers, there is a positive

integer N such that Na > b.

is probably less obvious than the first and should initiate more

discussion than tha first. The geometrical interpretation in

terms of the lengths of line segments should be stressed. Point

out that we really made use of this property when describing the

measuring process. When we lay off a string of segments each

wompust to a unit segment, along a given line segment, how do we

know that we'll ever reach or pass the endpoint? It is the

Archimedean Property which guarantees that we will. In many of

the standard proofs involving the concept of limit, we rely on the

Archimedean Property to select N in terms of a given E. The

student will meet some of these situations at the end of Course III.

5.12 Answers to Exercises

1. 3.02217, 3.1847, 3.19999, 3.201

2. f2, 2.2, 2.23, 2.236, 2.2361,...1 = C

If A is lub of C then A = 2.2361...

3. (d), (e)
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working with radical expressions.

Particular emphasis should be given to the "enticing

conjectures" on page 259 and any others which the students or

teacher might bring up for discussion.

The text does not mention the process of rationalizing

radical denominators of fractions. The teacher should point out

that this process is accomplished with the identity property for

() of (F, +. , <). i.e. i= 1=1 %_4.

2

Following these kinds of problems, the concept of conjugates

should be discussed relative to rationalizing radical denominators

of fractions. The general property: Va, b (a + b)(a - b) =

a' - should be reviewed. The following type of problems could

then be discussed.

(3 + 4.)(3 - JE) = (9 - 2) =7

(4/E + J5)(Jff - = (2 - 5) = (-3)

(3,5 - 20(3,5 + 2j6) = (45 - 24) = (21)

This above concept can then be used in rationalizing radical

denominators as in the following simplifications.

2477 2 7-75 2 - 2

10 10
2 73-1775 E7N.75

20JN - 50
5 12 - 25 1320

The following exercises will give additional practice ln working

with radical expression. The teacher should decide whether this

additional practice is needed or not.
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Simplify each of the following radical expressions. The

domain of each variable is the set of positive real numbers.

(Answers)

4 2
Y

e:
NY

xd77 310 °

3k

168d6

1.45

2x6y6 45

2 - 2Vg

+ 6o

-j! - 22

4

30 - 10jff
7

8(47 + .N/6)

2 -

5.14 Answers to Exercises

1 (a) 15 (b) 2J6 (c) 24! (d) 14/6 (e)

(x - 1) (g) 2xyfri (h) 2 (i) 4jg

) 1-*

10x
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2. (a) .jrff (b) J4-47 (a) (d) 4705

(e) V20eY4 (f) 4§x4Y (g) ,125a4b0

6
-. or ql 4.

11. 1Z--pl or 1-4-5-5E1

2 72 + 60/
{5 or

7

7. (2.5, -2.51

10. (-9, 31

12. (4, 81

13. If a'and b are real numbers, a Z 0, b > 0,

then (E)r = A A = ,ia
5A A A

then tEk . 1pi
b

then 17 . A
b ..5

11. By counter example

Let a= 16 andb9

= 4 - 3= 1 A-

15. If a, b are real numbers such that a, b Z 0

0.6 - 9

then (AVE)' . JET JE ,fir j5 = (A)°(.5)2 = ab

then A AX = ab

then AS . AVE.

5.16 Answers to Review Exercises

1. (a) 7 (b) 12 (a) 5 (d) 18

2. Assume there is a rational number ci (p, q are integers, q A 0)

such that = TAa. Then = 7i. Since q A 0, 7q A 0. Thus,

9
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17 is rational. Since the assumption leads to a contradiction,

the assumption is false. Therefore, 7' is irrational.

3. Suppose there is a rational number x so that x2 = 17. This

means we can find integers p and q where q A 0 and (RP = 17.
na

Squaring, we get Er = 17 or p2 = 17q2. However, p2 and q2

each contain an even number of factors of 17 in its complete

factorization into primes. Thus, 17q2 contains an odd number

of factors of 17 in its complete factorization. By the

Unique Factorization Principle, p2 A 17q2. Since the

assumption leads to a contradiction, the assumption is false

and we conclude that there is no rational number whose square

is 17.

4. The solution set of the equation is empty if the domain of the

variable is Q.

5. (a) NAN cm. (b) J5 cm. (c) 2 cm. (d) jgir cm.

6. 8

7. 2, 2.6, 2.64, 2.645

8.. (a) None (b) Can't tell (c) 7.138 (d) None

9. (a) x where x E Q; x where x E R

(b) None exists in either case

10. (a) For each a E S, a Z x.

(b) 1. x is a lower bound of S.

2. If b is any lower bound of S, then x k b.

1
11. (a) .11111 (b) No (0) .12 (d) g

12. (a) jrs (b) or = 2 (o) Zi.75 (d) 417 = 2
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13. (b) and (d)

14. The least upper bound of a finite set of rational numbers is

the largest number in the set. Thus, it must be rational.

Suggested Chapter Test

1) Prove that x2 = 7 has an empty solution set in (Qs +s ) by

using the Unique Factorization Property

2) Give an upper, bound for the set of all rational numbers less

than K. Is there a rational least upper bound?

3) Find 4 approximations to AT.

4) Find the least upper bound in Q of the following sets and

express it in the form of § b A 0.

a) [.41, .4141, .414141,...1

b) C.1, .11, .11r,...1

c) C.07, .077, .07771

5) Find the greatest lower bound in Q for the set (x :xEQand

x2 16)

6) What is the least upper bound of the set (x : x E Q and x2 < 4)?

Is the least upper bound of the set an element of the set?

Answer the same 2 questions for the greatest lower bound.

7) Prove that the set of natural numbers has no upper bound.

8) Simplify the following radical expressions.

(a) V245x'y4

(b) extayt4

(0)
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(d) AX(3,13 - 5./T8')

(e) (2A5 - 4)(345 + 45)

(f)
4

346 - 413

9) Find the solution set of each of the following equations in

(Q, )
(a) xa + 2x - 3 = 0

(b) 70 x0 250

(c) x2 4. 4 = 9

10) Find the solution set of each of the following equations in

(R, +, )

(a) (50x - 3 = 17

(b) 6434- 6x = 18

(c) 2x - (3,ff)x =

Answers to Suggested Test Questions

1) Proof: Assume there is an x E Q such tt t = 7. Let x =

where p, q are integers and q A 0. Then arm- = 7; then pa m 7q3;

p8 contains an even number (possibly 0) of factors of 7. e

contains an even number (possibly 0) of factors of 7. Then

7cla contains an odd number of factors of 7.

Therefore pa A 7qa

Therefore the assumption that xa = 7 has a solution set in

(Q, +, ) is false.

2) An upper bound for this set is:

1.42 or 1.5 or 2, etc.

There is no rational least upper bound.
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3) 3, 3.1, 3.16, 3.162.

4) (a) t.

(b)

(0) t 7107000

5) g.l.b. = (-4)

6) 2, yes

-2, yes

7) Proof:. Assume that N has an upper bound. Then, by the

Completeness Axiom, every non-empty set of R that has an upper

bound has a least upper bound in R. Let this least upper

bound be A. Then n < .6 for all n E N; but n + 1 E N;

Therefore n+ 1 S A; therefore n A- 1.

This contradicts that .6 is the least upper bound. Therefore

our assumption that N has an upper bound is false. Hence N

has no upper bound.

a) (a) 7x3 W

(b)

(a) a or af

(d) 3j6 - 30

(e) -4/13 - 27

(f) 6J6 aff

9) (a) (-3, 1)

(b) (-24, 241

(0)



10) (a) 111g1 or [2,A)

(b) (3, -45)

(0)
(45 + 10,5)

23

- 174 -
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Chapter 6

Coordinate Geometry

Time Estimate for Chapter 19 - 23 days

The main objective of this chapter is that of uniting

the real number system with axiomatic geometry. The

realization of this overall goal is accomplished through

a series of specific objectives:

1. extend the axiomatic geometry of Chapter 3 by the

addition of three new axioms, based primarily upon

the students' knowledge of the ruler and the real

number system.

2. relate the structure of real numbers to the structure

of the line.

3. understand the nature of a. line coordinate system and

system and related properties including betweeness of

points, division points, segments, rays and distances

on a line.

extend this concept to a plane coordinate system and

properties with sets of points, particularly those

sets forming lines in the plane.

5. study the equation for a line in a plane with emphasis

on substitution, slope, parallel lines and intersecting

lines.

6. use numbers, ordered pairs of numbers, equations and

inequalities as aids in the investigation of properties

of geometric figures.

Ar'S
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7. gain an understanding of basic properties of triangles

and parallelograms, concurrence of lines and other

various affine properties.

8. master the Pythagorean property of right triangles

within a plane rectangular coordinate system.

9. Finally, throughout the chapter, develop the ability

to formulate definitions and construct proofs based

upon the ordered field properties of real numbers.

6.1 Introduction (Time for 6.1, 6.2, 6.3 = 1 day)

This is a brief review of the axioms stated in Chapter 3

and should be assigned for reading at home before class

and/or serve as a basis for a series of questions initiating

the lesson centered about section 6.2.

6.2 Axiom 4: Uniqueness of Line Coordinate System

Starting with an unmarked line, students should be

called upon to draw various rulers on the line; the eventual

realization of this activity will be that the naming of any

2 points with coordinates taken from the Real number system

will determine the coordinates for all other points on the

line. It is usual that the points taken are the 0 and I

points, matched with the real numbers 0 and 1 respectively,

forming the 0,1-coordinate system. Please note order is

imperative: the 0,1-coordinate system 1 the I,0- coordinate

system.

1'9
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In establishing coordinate systems on a line, students

should realize that there are as many points on a line as

there are real numbers. Only under this assumption can

we set up a one-to-one correspondence.

In Section 6.3, problem No. 2 and parts of No. 3 lend

themselves to a development of the lesson. Some care

should be taken in clarifying the wording in No. 2b.

6.3 Exercises

1
1. 0, I, 7

2a.

b.

3. a. 2, -1

b. -1, 2

c. 2, 2 i

d. 2,

1 2
e. E0

4. a. False

b. True

c. True

LA- I 0 -I -03
1, I I

d. True

e. True

f. False

g. True

h. False

5. a. (1) The A, B-coordinate of A and B are 0 and 1

respectively. A, B-distance = 10 - 11 = 1.

(2) The A, B-distance between B and A = 11 - 01 = 1

(3) Let the A, B-coordinates of P and Q be p and q

respectively. If P = Q, then p=q and
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= 0.

If 1p-q1 = o p = q and P = Q.

b. (1) Let the A, B-coordinate of S be s.

is-11 = 215-01

(2) If 0<s<1 Then 1-s = 2s or s = 4.

(3) If s<0<1 Then -s+1 = -2s or s = -1

(4) The case 0<1<s is ruled out because then

S would be nearer B than it is to A.

6.4 Axiom 5: Relating Two Coordinate Systems on a Line
(Time: 6.4, 6:15. ays

The basic motivation of this lesson springs from the

standard ruler (the teacher may wish to use a yardstick for

demonstration purposes). Two basic coordinate systems are

identified in the process of measuring: one of inches and

one of feet. Each point is then assigned two coordinates,

one from each system.

The purpose of this section becomes apparent - to develop

methods of relating two coordinate systems by studying the

two coordinate names assigned to each point. From notions

of dilations (x-'ax where a 1 0) and translations

(x-ox+ b), the relation from one coordinate system to another

is seen as a composite mapping (x4ax+b where a / 0).

From x-4ax+b and 'vox', the equation x' = ax+b is

developed. In this sense, the yardstick first used

demonstrates the equation i = 12f (or x' = 12x+0) where

x=f= measure in feet and x' = i = measure in inches.

1 r 1
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Practice in algebraic manipulations may be necessary beyond

the 2 day time estimation and, if this is the case, the teacher

should provide review problems while continuing to teach the

material in sections to follow.

6.5 Exercises

1. a. 5

b. 11

c. 3

d. -7

2. a. 4

b. 5

c. 10

d. -50

Non
e. 8999 h

".
+ 1

f. 1000 1 i.
1

g. 3VI15. - 1 J. 1

e. 1503 h. 2(Airr - 3)

f. 5994 i. 6

g. ITo + 3 J. 2

3. a. x, = x+3 f. = -x - 1

1
b. x, = x-9 g. x, = 7or - 1

c. xl = -x h. xl = -2x + 4

d. x' = 2x i. x' = 2x + 200

e, xl = 3x J. xl = 2x - 36

4.
1

a. y = -fix

b. x = -3y + 2

5. a.

b.

c.

6. a.

x = -2y + 2 d. z = 2x + 2

x = 4 - 1 e. y = 1
+ 1

1 37y = + f. z = -4y + 6

F = ; C + 32 e. (F = + 32) => (F = -40)
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5 160
b. C = 7F - - f. (C+20 =0+32) => (C = -15) =>

(F=5)

c. 122; -4, 1832 g. Affine mapping

1
d. 10; -257 ; 10937

7. Let x = A, B-coordinate of a point on AB and y its

B, A-coordinate. Then x-coordinates of A and B are

0 and 1 respectively, while y-coordinates of A and B

are 1 and 0 respectively.

If y= ax + b, 1= a 0+ b and 0= a 1+ b.

Therefore b = 1 and a = -1, and y = -x + 1. To find

the point where A, B-coordinate is equal to its B, A-

1
coordinate let y = x. This leads to x = y =

8. x' - distance PQ = 1-5 - 31 = 8

x - distance PQ = 14 - 21 = 2

xf 8 4
The ratio of distances 1-3= =

xl = -4x + 11.

a = -4; 1-41 =

9. Since x' = ax + b connects A, B-coordinates to A', B' -

coordinates p' = ap + b and q' = aq + b.

The A', B' - distance PQ = 1p' -

= I (ap+b) - (aq+b)1=lap-aql =Ialip-qi.

The A, B-distance PQ = IP qf.

Therefore tale A', B'-distance PQ = lal, the A, B-distance

PQ.
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6.6 Segments, Rays, Midpoints (Time: 6.6, 6.7 = 2 - 2 dAys)

Although this section recalls basic geometric terms

previously studied, its main purpose is that of redefining these

terms in the light of coordinate systems.

A critical definition is given for the property of betweeness,

a term known by students solely on an intuitive basis. From

"betweeness" springs a discussion and definition of a line segment,

endpoints, interior points and midpoints; all of these terms are

viewed as inequalities or specific values on a line coordinate

system. Extension to the definition of a ray follows naturally.

Selected items from problems 1, 3 and 6 in Section 6.7

should be done in class before assigning homework. Students

might find the proofs in problem 10 difficult and challenging

but, once two or three are demonstrated in class, most of these

proofs should be within the grasp of many of the students.

Although these proofs may be omitted, the proofs in problems 7, 8

and 9 should be done.

6.7 Exercises

1. a. -1 < x < 1 f. x < 1

b. -1 < x < 2 g. x = 0

c. 1 <x < 2 h. x

d. x > -1 i. 0 < x < 1

e. x < 1

2. a. si e. 0

b. f.

<x <2

A/7 + N/7
1.
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c.

d.

7
g 20-

h. 2.3

3. a. 13 b. -19 c. -3 d. 2./2" - 3

4. a. B is between A and C. c. L is between M and N.

b. R is between P and Q. d. E is between D and F.

5. z = (3x- 2) + 1 =

6. a. or or 1315; etc. f. open half line DF>
b. n>or PI* etc. (or IYF - D).

c. .F g. - C (or UT where C is

d. CC` not included).

e. AE) h. AB - A - B (or Aar where

points A and B are not

included).

7. Xis in AS. Therefore the A, B-coordinate x of X

satisfies the condition 0 < x < 1. Thus x > 0 and is
-->

therefore in AB.

8. Let the A, B-coordinate of r be x and the A, B-coordi-

nate of Y be y.

(1) Then 0 < x < 1 and 0 < y < 1.

(2) Since r x y.

(3) Either y > x or y < x.

(4) Let y > x. Then 0 < x < y < 1.

(5) If Z is a point in W, then x < z < y.

(6) Therefore 0 < z < 1 and Z is in AS.

(Similar case for y < x).
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9. Theorem 2: If C is between P and Q, then PC + CQ PQ

Proof: To show PC + CQ = PQ, demonstrate IP el +

lc - qi 1p - ql. !p - el + lc ql = (p c)

+ (c - q) = (p + -c) + (c + -q) = p + (-c + c)

+ -q = p + 0 + -q = p -q = p - q = 1p - ql.

*10. a. Q . midpoint of M. Solving for q, we

see q = (p + r).

b. r = implies Q = trisection point of PR nearer P;

= implies Q = trisection point of PR nearer R.

c. Since Q is an interior point of PR, we know that

must be a fractional value less than 1.

Intuition tells us that m = 0 and n = 1.

Proof: Given m < 1 =
p
2 < n and Q between P and R,r-

then m = 0 and n = 1.

(1) Let m = 0 and n = 1. Either p > r or p < r.

(2) p > r m> r - p is negative => (0 < < 1) =>

(0 >q-p>r- p) => (p >q> r) =>Q is

between P and R.

(3) P<r=> (0 < < 1) => (0 <q- p <r -p)

=> (p < q < r) => Q is between P and R.

Alternate Proof:

(1) Either (p < q < r) or (p > q > r).

(2) (P <q< r) => (0 <q-p<r- p) => (0 < 9=1p
< 1) => m = 0 and n = 1.

(3) (I) >q> r) => (0 >q-p>r- p) => (0 < 211=-2r - p

< 1) => m = 0 and n = 1.
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Check: Let p = -2 and r = 8. Then (0 < r p < I) =>

(0 < §-Z-44-1 < 1) => (0 < < 1) =>

(0 < q + 2 < 10) => (-2 < q < 8) => Q is an

internal point of W.

d. From part c, p = -2 and r = 8. Select q < -2, say

q = -4, Then = = a NEGATIVE

value.

Proof: If P is between Q and R, then
r p

< 0.
-

(I) Either q < p < r or q > p > r.

(2) (q < p <

and 0 < r

=> (q < p and p <

< 0.

=> (q - p < 0

p) =>

(3) (q > p > => (q > p and p > => (q - p > 0

and 0 < r => < 0.

e. Proof: If q
- p

> 1, then R is between P and Q.
r

(1) Either p > r or p < r.

(2) (p > r) => (0 > r - p).

(1,1=i 1) (q - p < r p) => (q < r).

(p > r) and (q < r) => (p > r > q).

(3) (p < r) => (0 < r - p).

> 1) => (q - p > r p) => (q r).

(p < r) and (q > => (p < r < q).

f. Given 1.:12.
r p

Let q' aq + b; = ap + b; r' = ar + b

The
4' -p' _ b ) (aP b) - _ 172
r' - p' (ar + b) - Cap + b) ar - ap r - p

g. To show is the P, R-coordinate of Q, let p = 0r - p

and r = 1.

1"")
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Then 11 -ii -1=q= P, R-coordinate of Q.

Alternate Proof: Find the formula 20 = ax + b that

converts p to 0 and r to 1, This is xt = -1-1---22 as
r p

can be checked with x = p and x = r. Then when

x = q, we get the P, R-coordinate of Q to be !:f1.--&i.

h. Proof (I :

p
q P-Oif and only ifQ= P.
r -

(1) 0) (q - p = 0) .> (q p) => Q = p.

(2) (Q = p) => (q = p) => (q - p = 0)

Since P 1 R, p / r and r - p / 0

(q p = 0) and (r - p 0) => = 0).

Proof (II): 2- =-2 - 1 if and only if Q = R.
r - p

(1) = 1) => (q - p = r p) => (q = =>

Q = R.

(2) (Q = R) => (q =

Since P / Rp p r and r - p / 0

(q = => (q - p = r - p) => = 1).

6.8 Axiom 6: Parallel Projections and Line Projections

(Time: 6.8, 6.9 = 1 - 12 days)

Although the wording of this last axiom might prove to be

cumbersome and confusing to some students, the concept is

reasonably simple. Essentially, one line may be transformed to

a second line by means of a parallel projection; Axiom 6 states

that parallel projections preserve coordinate systems.

The six axioms are restated at the end of this section to
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aid the students in proving statements found in section 6.9.

Certainly, at least two of these proofs should be demonstrated

in class before assigning the remaining exercises for homework.

6.9 Exercises

1. Given B is between A and C.

By Axiom 4, let A and C correspond to 0 and 1 respectively.

Then A, C-coordinate of B is between 0 and 1.

By Axiom 5, let x' = ax + b where a . 1 and b = 0 => xl

= x.

By Axiom 6, the A', C'-coordinate of B' is between 0 and

1.

Therefore, B' is between A' and C'.

2. Given B is the midpoint of 0.

The A, C-coordinate of B =

By Axiom 6, the A', C'-coordinate of B' =

Therefore, B' is the midpoint of TI TT.

3. By definition, all A, C-coordinates x of AU>satisfy x > 0.

By Axiom, 6,-the A', CAcoordinates of images of points.-

inqU>= their A, C-coordinates. Thus x' = x.

x' > 0 implies A'CI
>
is a ray.

4. Given 'B divides Mr, from A to C, in the ratio r.

b aLet A, C-coordinate of B = = b.
c a

Then. x' =
x - a
c - a

By Axiom 6, the A', C'-coordinate of B' =
b - a

= b.c - a

Therefore, B' divides MI-, from A to C. in the ratio r.

1( q
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I cl la? -c'
5. To,prove - use Axiom 6 with thedA, B-

1c - bl 1c, - 1:01

coordinates and Al, BI-coordinates equal.

10 el 10 011
Then lc 11 = But A', 1P-coordinate c = c.

lc' 11

Therefore, 10 - cl 10 - cl

lc - 11 lc - 11

6. Consider the A, B-coordinate system where A = 0, B = 1

and D = and the parallel projection from<AB?to<AC>in

the direction of<EU?

By Axiom 6, the A, C-coordinate system (A = 0 and C = 1)

must take the image of D to

Therefore, the line containing D and parallel to
<
BCCpasses

through the midpoint of AU.

7. Under the A, B-coordinate system A = 0, B = 1 and D =

and the parallel projection maps<AB>to<AC>in the direction

of<T3c--

By Axiom 6, the A, C-coordinate system (A = 0 and C = 1)

must. take_the_image_ofatOl_

Therefore, the line containing D and parallel to<iC>

trisects 'nearer to A.

6.10 Plane Coordinate Systems (Time: 6.10, 6.11 = 1 - 2 days)

The purpose of this section is to extend, in a natural way,

what has been learned about line coordinate systems to the existence

and study of plane coordinate systems.

A plane coordinate system is determined by the intersection

log
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of two line coordinate systems. By calling the 0, I-line

coordinate system the x-axis and the 0, J-line coordinate system

the y-axis, there is now formed the 0, I, J-plane coordinate

system. Again, order is imperative: 0, I, J-coordinate system

1 0, J, I - coordinate system.

It should be noted that the distance from 0 to I need not

equal the distance from 0 to J and that the x and y axes need

not be perpendicular.

The teacher should have various students graphing the same

sets on the board at the same time to show a variety of plane

coordinate systems whose conditions, once graphed, appear to be

different but are equivalent. (See Section 6.11, No. 9 for

examples).

6.11 Exercises

1. All points on the y-axis have 0 as their x-coordinate,

and the y-coordinate can be any real number.

2. All these points are on the x-axis and only those whose

x-coordlhates-are-negatlye-,--The.set-of points-forms-an.

open half-line.

3. a. (P(x,y) 1 x = 0). d. (P(x,y) 1 x < 0 and y > 0).

b. (P(x,y) 1 x = y > 0) e. (P(x,y)jx<0 and y<O)

c. (P(x,y) 1 x = 0 and y < 0) f. (P(i,y)1x>0 and y<0).

4. a. For any point on t, there is only one line containing

that point and parallel totT? and thj9t line is t

itself. Therefore all points of have 1 as x-

coordinate. Conversely, if a point has 1 as

101'
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1. el la' - cil
5. To .prove - use Axiom 6 with the 'A, H-

ie - bl lc' - 1311

coordinates and Al, B'- coordinates equal.

10 - cl 10 - c'l
Then lc = But A', B'- coordinate c = c.

lc' - 11

Therefore, 10 - cl 10 - cl

lc - 11 lc - 11

6. Consider the A, B-coordinate system where A = 0, B = 1

and D = and the parallel projection from<Alto<AC>in

the direction of<SU.?

By Axiom 6, the A, C-coordinate system (A = 0 and C = 1)

must take the image of D to

Therefore, the line containing D and parallel to<Hipasses

through the midpoint of 0.

7. Under the A, B-coordinate system A = 0, B = 1 and D =

and the parallel projection maps<AH>to<AC>in the direction

of He

By Axiom 6, the A, C-coordinate system (A = 0 and C = 1)

must take-the image of D to

Therefore, the line containing D and parallel to<k>

trisects>nearer to A.

6.10 Plane Coordinate Systems (Time: 6.101, 6.11 = 1 - 2 days)

The purpose: of this section is to extend, in a natural way,

what has been Jarned about line coordinate; systems to the existence

and study of plE;ne coordinate systems.

A plane co4dinate system is determined by the intersection
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of two line coordinate systems. By calling the 0, I-line

coordinate system the x-axis and the 0, J-line coordinate system

the y-axis, there is now formed the 0, I, J-plane coordinate

system. Again, order is imperative: 0, I, J-coordinate system

/ 0, J, I - coordinate system.

It should be noted that the distance from 0 to I need not

equal the distance from 0 to J and that the x and y axes need

not be perpendicular.

The teacher should have various students graphing the same

sets on the board at the same time to show a variety of plane

coordinate systems whose conditions, once graphed, appear to be

different but are equivalent. (See Section 6.11, No. 9 for

examples).

6.11 Exercises

1. All points on the y-axis have 0 as their x-coordinate,

and the y-coordinate can be any real number.

2. All these points are on the x-axis and only those whose

x-coordinates are negative. The set of points forms an

open half-line.

3. a. (P(x,Y) I x = 0). d. (P(x,Y) I
x < 0 and y > 0).

b. (P(x,Y)
1 x = 0, y > 0) e. (17(x,y)lx<0 and y<O)

c. (P(x,Y) I x = 0 and y < 0) f. (P(x,Y)Ix>0 and y<0).

4. a. For any point on t, there is only one line containing

that point and parallel to<OZ; and that line is f

itself. Therefore all points of .1 have 1 as x-

coordinate. Conversely, if a point has 1 as
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x-coordinate, it must be on t; otherwise its

x-coordinate is not 1. .12, = (P(x,y) I x = 1).

b. m = (P(x,y)
I
y = 1).

c. n m (P(x,y) 1 x 1 and y = 1).

There is exactly one point in OI
<>

whose 0, I-coordinate

is a, call it A. There is exactly one line through A

parallel to
<
OJ,

>
call it A. Similarly, there is

exactly one point in<OJ>whose 0, J-coordinate is b,

call it B. And there is exactly one line through B

parallel to DPI, call it m. fl m contains exactly one

point, and this is the point whose coordinates-are

(a, b).

6. a. (P(x,y)
I
y = 4)

b. (P(x,y) I
x = 3)

c. P has the coordinates (3, 4). Let B have coordinates

(3, 5) and C have coordinates (4, 4). Then the set

(Q(x,y)
I
y > 4 and x > 4) is the interior of <BPC.

d. Using the points P, C and D(3, 3)

(R(x,y) 1 y < 4 and x > 0) = <DPC - PD>

7. a. (1)(x,Y)1Y = 2)

b. (P(x,Y)Ix = -3)

8. a. (P(x,Y)IY = -5)

b. (P(x,y)lx =



9.
a)

c)

e)
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b)

d)

-109



g)

1)
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The x-coordinates of points on A are the 0, I-coordinates of
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points on<ZT>acquired under the parallel projection f

from A to<OI>in the direction ofq10 By Axiom 6, tf

0 - 0' and I - I' then the x-coordinate of

any point on / is the 0', I'-coordinate of that point.

Hence the correspondence between x-coordinates of points

of t and their points is a coordinate system-namely the

coordinate system with base (0', I').

6.12 An Equation for a Line (Time: 6.12, 6.13 = 2 days)

The purpose of this section is that of'gaining skill in

describing sets of points in the plane that form straight lines

by means of equations. Since students have had experience with

equations for lines that were parallel to one of the axes, the

main concern here will be with equations of the form ax + by + c

= 0 where: a 0 and b 0 (lines that intersect both axes).

The main approach taken is that of substitution. In

section 6.15, the concept of slope and the slope-point form of

the equation are introduced via exercises, and the teacher is

referred to the Teachers Commentary for section 6.14.

Since the claim is made that every line in the plane can

be described by the equation ax + by + c = 0, exercise no. 2 in

section 6.13 is important. Exercises nos. 6, 7, 8 and 9 are

essential; selection may be made from the remaining exercises

in section 6.13.

6.13 Exercises

1. a. A is a point of b. B is c. C is not

d. D is e. E is not f. F is
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His not

k. M is

2. e, a, e end f can be equations for lines.

3. a. y -3x + 5

b. y = -3x + 8

c. not possible

2
d. y =

e. y = -2x + 8

f. y -Ex +
c

i. K is not

1. Nis

4. These are an infinitc number of correct answers for

each. We select one pair arbitrarily for each.

a. P(0, 2) is on the line Q(1, 2) 1.s not.

b. P(6, 0) is on the line Q(6, 1) is not.

c. P(4, 0) is on the line Q(4, 1) is not.

d. P(9i, 8) is on the line Q(9, 8) is not.

e. p(8, 0) is on the line Q(8, 1) is not.

f. P(12, q) is on the, line. Q(12, 2) is not.

5. a. Does contain.

b. Does

c. Does

d. Does not

e. Does not

f. Does k. Does not

g. Does not. 1. Does not

h. Does

i. Does

J. Does not

6. Note that the coordinates of are (0, 0), of I are (1, 0),

of J are (0, 1).

a. 0 d. 0 g. 0

b. J e. I h. 0, J

c. I f. J
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7. Any equation equivalent to those listed for each part

is acceptable.

a. y = 0 e. x - 4y + 2 = 0

b. x - y - 2 = f. y = -2x + 22

c. x + y = 6 g. y = Ix - 3

d. x + y = 0 h. 3y = 5x + 15

8. a . y = 0 b. x = 0 c. x + y = 1

9. a. UT = (P(x,y)ly = 0 and 0 < x < 1)

b. OJ = (P(x,y) x = 0 and 0 < y < 1)

c. IJ = (P(x,y) x + y = 1, 0 < x < 1)

(;.4 0), (0, i).

a. (2, 1) d. (2, -2i)

b. (4, 2) e. (0, 0)

c. (-1, 4) f. (?r,

6.14 Intersection of Lines (Time: 6.14, 6.15 = 22 to 3 days)

The purpose of this section is to solve systems involving

pairs of linear equations. Cases involving the intersection of

one point and the null intersection are studied. The teacher

may wish to menticr the situation where the equations are dependent

(2x + y = 5 and 4x + 2y = 10) thus resulting in an intersection

that includes an infinite set of points (((x,y) 1 x = k and y =

5 - 2k, k E Real numbers)).

In section 6.15, problems 5, 6, 7, 8 introduce and develop

the concept of the slope of a line and the point-Ame form of

an equation. The teacher should feel free to develop this

material in class or to provide additional lessons concerning

1 iii()
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slope. Experience has shown that teacher explanation and class

time are necessary in this area.

In studying parallel lines given in the form of equations

(y = ax + b and y = ax + c), the teacher should attempt to bring

the following notions into a. classroom discussion:

1. If b / c, the lines will be parallel such that their

intersection is empty.

2. If b = c, the lines will be dependent. Since both

equations are equal, only one line is described. The

intersection will be the line itself. Parallelism must

still hold to maintain an equivalence relation; certainly

parallelism is reflexive and every line must be parallel

tb itself.

3. Equations of the form, y = ax + b can be readily derived

from equations in the point-slope form.

Ex: Let L contain points (3, 5) and (4, 7) and let

any point on the line t be given by the general

coordinates (x, y).

Y 7 - 5
x - 3 4-=F

- 2 2
k-.7. T NOTE: slope = T. = 2

y - 5 2(x - 3)

y - 5 = 2x - 6

y = 2x -1

Comparing y = 2x - 1 to the general form y =

ax + b, we see that "a" is the slope of the

equation.
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4. An investigation of "b" as the y-intercept in the

equation y = ax + b is optional.. Students may discover

this and bring it to the attention of the teacher and

the class. However, a grasp of the point-slope form

seems to be of greater conceptual value than the

slope-intercept method.

5. The parallel postulate should be investigated and students

should be given problems of the type, "Given line A and

point P, find the equation of the line parallel to A and

containing P."

Ex: Let £ = ((x,y) 1 y = 3x - 2). Find the equation

for line k where k A and point (3, 5) E k.

Since y = 3x - 2 has a slope of 3 and k £,

we get (y = ax + b) => (y = 3x + b) for line k.

By substituting, (y = 3x + b) .> (5 = 3.3 + b)

=> (-4 = b).

k has an equation y = 3x - 4.

NOTE: (See Section 3.9, problem 3)

6. The same situation should be studied by the polmt-slope

form: Taking the general point (x, y, point P 5)

and the slope of y = 3x - 2 as 3, we get

: 3) .> (y _ 5 3,(x - 3)) .> (y 3x - 4).

Of course, students should not be expected to master the

solution of simultaneous equations by various methods within a

3 day span,and the teacher should provide problems to allow for

practice in algebraic manipulations while continuing to teach
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material in the sections that follow. A natural reenforcement

of these concepts does occur in sections 6.16, 6.18 and 6.20 but

many of the proofs depend upon an expertise with the solution of

pairs of linear equations.

6.15 Exercises

1. a. (8, 3)

b. none

c. (2, 6)

d. 3)

e. (3, 0)

f. (3, 4)

/ 5 -26%
8' )

h. none

2. < 01 has equation y = x; 1J )has equation x + y = 1;

<> 1 <-->
JA has equation y = + 1; OI has equation y = 0;

< >
has equation y = 2x - 2; <6ehas equation x = 0.

a. The solution of (y = x and x + y = 1) is

b. The solution of (y = ix + 1 and y = 0) is (-2, 0).

c. The solution of (y = 2x - 2 and x = 0) is (0, -2)

3. An equation for AB is y = ix + 2. (-3, -1) satisfies

this equation. Therefore C is 0r-1<W

4. a. An equation forAB>is y = 2x - 5. (-2, -9)

-->satisfies this equation. Therefore C is on<AB.

b. An equation for
<
5E

>is y = -2x + 8. (3, 1) does not

satisfy this equation. Therefore D, E, F are not

collinear.

c. An equation for< >
is y = x. It is satisfied by M.

Therefore K, L, M are collinear.

d. The conditions a /03, b E o tell us that P, Q, R are
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distinct. An equation for<PR> is x + y = o, which

is satisfied by (o, o). The points are collinear.

Alternate: An equation for
<-->
PQ is y =---

a
x, which is

satisfied by point R : ( -a, b). The points are

collinear.

a. x -1 0 1 2 3

Y -5 -3 -1 1 3

for (xl, yl) = (2, 1) and (x2, y2) = (3, 3)

for

3 - 1 2 0
3 - 2 1

(-1, -5) and (x2,

Y2 Y1 -3-(-5 2
x2 - xi o-(-1 )

The results are the same. Yes.

Y2 )

= 2

(0, -3)

b. For (x1) Y1) = (P) 2p -3) and x2, y2) = (q, 2q-3)

Y2 Y1 (2q-3) - (2p-11 _22.2. 2
x2 - x q P q_p

The sentence completion is:

q -p

Y0-Y,
" 2.
x2 xi

c. For (xl, yl) = (xl, axi + b), and (x2, y2)

(x2, ax2 + b):

Y2-y1
(ax2

b) (8x1+
8
x2

-8
xl

X2-X1 X2 - X1 -x2 xi

a(x2-x1)

(x2-xli

d. 5; -2; 0; 1

a.

2
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e. The lines are parallel if their equations have no

solution or the lines are parallel if the equations

are equivalent. (y=ex+b and y.ex+c) have a

solution if there exists x for which

ax+b = ax+c, or b=c. If b c there is no solution.

If b = c, the equations are equivalent and the lines

are the same. In either case the lines are parallel.

6. Slope of m is i4 1. Using the point-slope form with

(xl, yl) = (6, 2) we get y - 2 = -1(x - 6).

Any equivalent equation to this is acceptable.

7. a.
-5 -(-2) -3

b. 3Starting with slope = and using (x1, y1) = (1, -2)

1y + 2 = - ox - 1) or 3x + 2y + 1 = o.

c . (3.20 + 2y + 1 . 0) .> (y = -30-P

d. (3x + 2.8 + 1 = 0 => (x =

8. x = -2 is an equation for a line with no slope.

y . 3 is en equation for a line with zero slope.

6.16 Triangles and Quadrilaterals (Time: 6.16, 6.17 = 1 - 2 days)

Here, proof is the keystone in examining various properties

of triangles and quadrilaterals (primarily parallelograms). The

basis for these proofs is the plane coordinate system and the

properties discovered or defined with regard to linear equations.

The median of a triangle is introduced and defined. Note

that the ratio 2:3 described in the text is the ratio AG:AE where

AT is a median and G is the point at which the 3 medians of the

triangle meet. (See Figure 6.22 in text). It is not

2'71
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uncommon to state that the medians of a triangle intersect to

form segments that are in a 2:1 ratio. Then, using the example

shown, AG:GE = 2:1.

At least 2 of the proofs to be found in section 6.17 should

be demonstrated in class before assigning the remaining proofs

for homework. Problem 3 would be excellent in this regard.

6.17 Exercises

1. a) Let the triangle be ABC and (A, B, C)

as the base of a plane coordinate

systeu.

b) The midpoint of is P(0, i) and

the midpoint of WC os i).

c) <7q?has the equation y = 2. P(0.0k

d) <Alhas the equation y = 0.

e) <vii>n<Te. 0

f) <7k11,<*.

clv)

A(do)

2. Let the triangle be ABC and take (A, B, C) as

base. P(0, 2) is the midpoint of TU.

An equation of t, the line that contains

P and is parallel to<Alis y =

An equation for:(BC>= x y = 1.
P(I'd

A ntt>= (Q4,
Q is the midpoint of EU

t passes through the midpoint of BC.
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3. (a) Given BD:DA = 2:1 and

CE:EA . 2:1

Provet-111
110), c(1,0)

1. Take (B, C, A) as base given coordinates as

indicated for B, C and A.

2
2. By ratio, D is T of the way from B to A and

2
E is 5 of the way from C to A, producing

D(0, .) and E(4-,

3. <DE>has equation y = 2.

<M>has equation y = 0.

4. <IV il<T3-0:

(b) Given above and BR' n CD = (F) D

Prove BF:FE = CF:FD = 3:1

A

1. <TEhas equation y = 2x.

2. -eldhas equation 2x + 3y = 2 B!° .010

(from (F14 - 13) =2 (R4-T. li) =>

(-y = .(x - 1)) => (-3y = 2(x - 1)) =>

(-3y = 2x - 2) => (2 . 2x + 3y)]

3. <!'n '= (Fi(k, i.))
4. Comparing lengths by distance formula, taking

E

x-coordinates only

1 11 3 4 1
BF = 10 - 141 ; FE = 14 - F1 = 117 - 171 = nr.

5. Then BF:FE =
12
1 3 1 3.1

12

1. 3
=

11
-

ot
6. Similarly, CF = 11 - 41 . 47; FD

3 1
7. Then CF:FD = : = j.I.
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4. Given A, B, D-coordinate

Prove: ABCD is a paralle

a) Equation for<XIPis x

forlt>is x = 1.

Then<AD;1<ie

b) Equation for<AB>is y

<A--f>11<b-d>

c) Since opposite sides

of C is (1, 1).

logram.
BOLO

= 0;

i/

= 0; for<DU>is y = 1. Then

are t, ABCD is a parallelogram.

c(1,

5. Given: rd and BD bisect each other.

Prove: ABCD is a parallelogram

a) Let base be (A, B, D) and

assign coordinates to A(0, 0);

B(1, 0) and D(0, 1). (c1A

b) Since BD is bisected, E is midpoint. Then E has

coordinates

c) Equation foi(AEis x = y.

d) Since U is bisected at E, AE = EC. Let C be (x, y)

e) Using only x-coordinates, where AE = EC, we get

10 - = 11- - xl or 2 =I - xl or x = 1

f) Using y-coordinates where AE = EC, we get

Dlo,o0

10 -I = I2 Y1 or y = 1

g) Since C has coordinates (1, 1), we know by problem

4 that ABCD is a parallelogram.
DI V) Fli40 CO0)

6. Given: parallelogram ABCD where

E is midpoint of AT and

F is midpoint of DC.

21.!!`) Prove: AECF is a parallelogram. E(1 0) 130
z.
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a) Let (A, B, D) be base and assign coordinates to

A, B, C, D.

b) By midpoints, E has coordinates 0) and F(i, 1).

c) Equation for 11 is y = 2x; equation for tt is

y = 2x - 1.

d) Since elopes of AF and EC are equal, AF 11 EC.

e) Since DC 11 AB from the given, we know VS g II,

f) Then, with opposite sides 11, AECF is a parallelogram.

7. Given: data from no. 6 and

n = (G)

Prove: AG:.GF = 2:1

a) Equation for tl is x + y = 1;

equation for 11 is y = 2x

b) It n ))

e) Using the x-coordinates for A, G, F as 0, 4., we

get

In (1 11 1 12E. 3( 1AG:GF - 17 - = 1 - = :
1

2 : 1.
'11

G 01' C (1%49

8. Given: ABCD is a quadrilateral

with midpoints as

listed in diagram. A

H

Prove: EFGH is a parallelogram

if it is a quadrilateral.

Take (A, B, D) as base of a coordinate system and let

C have coordinates (a, b). The midpoint E of AB has

coordinates 0).

11(sjo)
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The midpoint F of BC has coordinates (a 1, 1.3.).

The midpoint of G of Uff has coordinates
b + 1).

The midpoint H of DA has coordinates (0,

The midpoint of EG has coordinates
(a

,1

b + 1).

+ 1 +The midpoint of PR has coordinates (a b l

Therefore E0 and FH bisect each other. By Exercise 5

EFGH, if it is a quadrilateral, it is a parallologram.

Note.

In order to show a figure is a parallelogram, we must first

show it is a quadrilateral. (See definition of parallelogram).

To do so here we would have to show that E, F, G, H are

four points, no three of which are collinear, that

EF fl GH = 4), and FG n EH = 4). (See definition of

quadrilateral). But this was not asked for in this

problem.

6.18 The Pythagorean Property (Time: 6.18, 6.19 = 12 - 2 days)

The teacher should note that this topic is not developed

rigorously in this Chapter. Any attempt to do so within the

system defined by the six axioms faces difficulties which we

cannot expect pupils to overcome. There are two major difficulties

(and a number of minor ones). The first is to define a.

perpendicularity relation for lines. A perpendicularity relation

may be defined as follows (patterned after Modern Coordinate

Geometry, Part 1, page 263).

9(4) Definition. A perpendicularity relation in an affine plane
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is any relation (denoted by 1 and read "is

perpendicular to") between two lines in the

plane such that

(i) for no line L is t 1 I.

(ii) if L 1 m, then m 1 A.

(iii) if P is a point in the plane and L is a

line, there is one and only one line m

in the plane containing P for which

m 1 L.

With these properties of a perpendicularity relation one

may then prove the following basic theorems for lines in the plane.

1. If ti 1 m and 12 1 m, then ti Pi to.

2. If ti 1 m and :ti 11 to, then t2 1 m.

3. If ti 1 to then it is not true that t1 tr.

4. If ti ml and to m2, then ti 1 12 if and only if ml

The second major difficulty is to define a function, d,

which serves to yield distances on different lines that are

comparable. A function that has the following properties would

be suitable.

(1) d is defined on all ordered pairs of points of the

plane.

(2) On any line in the plane d is a linear distance

function.

(3) Any parallel projection from a line to a parallel

line preserves d.

(4) The Pythagorean property holds.
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Having defined d and 1 there is still the problem of proving

that these can be introduced into a plane coordinate system.

This is a most vexing problem for it can be shown that any plane

coordinate system (no matter how the axes are taken) can be

transformed into a rectangular coordinate system. For a proof

of this assertion see Modern Coordinate Geometry Section 7.5.

The students should have some practice with selected

problems from exercises 1, 2, 3 and 4 from section 6.19 before

assigning homework.

6.19 Exercises

1. a. 5

b. 17

c. 6

2. a. 4.(1T

b. '415

c. '4/7

d. '%/7

3. a. 5

b. 5

4. a. (0, 8)

b. (0, 5)

d. 12

e. 24

f. 214

e.

f. 441

g.

h. 1

C. 13 e. 4513

d. or 2s/2 f.

c. (0, 0/13) or (0, 247)

d. (0, VI TS))) or (0, WI)

5. a. x = 8, y = 25 b . y = 15, x = 17

6.20 Plane Rectangular Coordinate Systems

(Time: 6.20, 6.21 . 2-3 da:rs)

Using a plane with base (0, I, 3),
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restrictions are made to define a rectangular coordinate

system: a. 61

b. OI = OJ = 1

The importance of this system comes in the development of

the distance formula for any 2 points in the plane given by

coordinates (xi, yl) and (x9, ya,):

D = distance = - x9)2 + (y1 - y9)2.

The relation between this formula and the Pythagorean property

c =Vali + b2 should be clear and should demonstrate the need for

the rectangular coordinate system.

6.21 Exercises

1. a. AB = 5

b. CD = 5

c. EF = 5

d. PQ = 4

e. RS = N/40 i. EF =Nitili-7-5-Fb

f. TV = 0 j. GH = lb - cl
g. AB =V125 k. KL = la - cl

h. CD =47 1. MN =,./(a-c)2+(b-d)?

2. a . AB = VP' = BC

b. AB = V50 = BC

c. AC =Nag = BC

d. AB =,./7-0-- = BC

e. AB =,./1$3. = AC

C has coordinates (3, 4). AC =NPTri-Tr= BD

4. a. Midpoint D of AT3 has coordinates (3, 4).

CD =,../r + 42 = 5, AB =V62 + tim = 10 CD =

b. D has coordinates (6, .).

CD =461--T-411=,43541--=

AB =,./Ifg

AB =N/122 + 58 = 13

CD = in;

169
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d. half the length of the hypotenuse.

5. The midpoint D of AB has coordinates (2, 3).

The midpoint E of CB has coordinates (-2, 3).

AE -,16w + 3?, CD =V-F7742-, AE = CD

6. Slope of AB = = slope of GAD CD

Slope of BC = 1. = slope of It BC 11 It.

ABCD is a parallelogram.

AB = V34 + = CD, BC = N/47 + 4a = DA.

7. Substituting the distances for AB, AC, and BC in

(AB)2 = (AC)s + (BC)2 we get

b2 + as = es + as + ca - 2cb + WI which is equivalent to

0 = 2c2 - 2cb = 2c(c - b).

This implies that either c = 0 or c - b = 0. The

latter implies c = b or C = B and we do not have the

triangle ABC that was given. Hence c = 0 or C = D and

LACB is a right angle.

8. The numbers that can be sides of a right triangle are

in a. (hypotenuse length = 25)

b. (hypotenuse length = 25)

c. (hypotenuse length = 7)

f. (hypotenuse length = 4)

h. (hypotenuse length = 41)

i.. (hypotenuse length = 5a).

6.22 Summary

Assign for student reading.

011
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6.23 Review Exercises

1. a. y = 5x + 2 b. y = 2x - 8

1 2 1
2 . a . x = 5y - b. x = + 4

3. a. (P(x) I -2 < x < 1)

b. (P(x) I x > -2)

c. (P(x) I x < 1)

d. (P(x) I x is any real number).

e. (P(x) I -1 < x < 0)

f. (P(x) 1 -2 < x < 0).

g. !?(x) I x > -2)

h. (P(x) I x = 0)

i. q

j. (13(x)
I
x =

k. (P(x) 1 x =

4. We can prove that B divides AU, from A to C, in the.same

ratio as E divides BF, from D to F, if we can show that

the A, C-coordinate of B is equal to the D, F-coordinate

of E. Since A --A-> D, B --A-> E, C --A-> F. This

follows directly from Axiom 6. To prove that C' divides

Eit, from B to A, in the same ratio as F divides ED from

E to D, use the B, A- and E, D-coordinate systems and

Axiom 6.

2
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)

e 1,

d)

h)

7
-1<-- 0 i



6. a. y = 2

b. x = -2
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c. y = x

d. x + y = 0

e. 2x+3y = 6

f. y=-ix - 2

7. a. Midpoint of AB has coordinates (4-, 2). Slope of
64
AB =O.

b. Midpoint of 3-5-Z has coordinates (0, 0). Slope of

= 1.

c. Midpoint of KL has coordinates (-1, i). Slope of
4.4 5
KL =

8. Using (A, B, C) as base of a coordinate system, D has

coordinates (2, ;-) and E has coordinates (1, 0). AD has

equation (1) y = x. CE has equation (2). 3x + y = 1.

Solving (1) and (2), we get point intersection P(k, 4).

1
The x-coordinates of A, P, and D, namely 0, 47,

1

are evidence that P bisects 0.

9. Using (A, B, C) as base of a coordinate system, 1) D has

coordinates 0) and F has coordinates (k, i). An

equation for AE is (1)y = 2x. An equation for Cg is

(2)x + y = 1. Solving (1) and (2) gives F(., .). The

x-coordinates of C, F, Bp namely, 0, 4:0 1 show CF:FB =

1:2.

10. Using (A, B, D) as base, C has coordinates (1, 1), E has

coordinates ( -, 0) and F has coordinates (, 1). Slope

of nt = 3. Slope of Et = 3. Therefore IP EC and AECF

is a parallelogram. Thus AU and P bisect each other,

that is, have a common midpoint. But DB and AC also have

a common midpoint. Therefore AU, '0, and n meet in a.

91P9
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point.

a. AB = 50 c. AC =4/37

b. AB .Nas d. BC =4119.

a. AB . 6 c. EF = 5

b. CD = 16 d. GH =43-75-

13. Using the rectangular

coordinate system,

indicated at the right,

the final position D

has coordinates (5, 2).

AD =Nn37.1777 =,,i7.5" miles.

14. The midpoint of AC" has coordinates (4, 3).

The midpoint of BD has coordinates (4, 3)

ABCD is a parallelogram.

E has coordinates (1, 2); F has coordinates (5, 5; G

has coordinates (7, 4); and H has coordinates (3, 1).

EF + 3' = 5

FG =

GH = Ai4' + = 5

HE =A/2z + =

EF = GH and FG = HE.

15. To prove lengths on different lines equal we must use

rectangular coordinate systems. Let the triangle be

ABC. Let AB be the positive x-axis of a rectangular

coordinate system, let B have coordinates (a, o) and
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let C have

coordinates (b,c).

Then midpoint D of

0 has coordinates

and E the

midpoint of CB has

coordinates

P. Using the 2
distance formula twice, AB =

2 , DE =
2

re. = Va
.nr

1
Or simply AB = a %

2
DE = AB.

DE
a
2

Suggestions for Test Items for Chapter 6 Course II.

1. Assume two coordinate systems on the line below, one of

which assigns coordinate x to a point and the other

assigns x' to the same point.

0
-I 0 I 2 a

6 C D E

x' - coordinates

x - coordinates

a. What is the B, C-coordinate of the midpoint of EU?

b. What is B, D-coordinate of A?

c. What is the formula that converts x-coordinates to

x'-coordinates? Give answer in the form x' = ax + b.

d. What is the formula. that converts 3C-coordinates to

x-coordinates? Again give answer in the form x = + b.

91
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4. Show A (6, 3), B(2, -3) and C(100, 144), where all

coordinates are relative to the same coordinate systems,

are on the same Line.

5. Using the 0, A, D- coordinates

given in the diagram at the

right, show that 0, H and K

are on the same line.

Fto

D (0,041©-
0(o0) A(s,o) Bf2,6) e(3,0)

6. In triangle ABC let medians AD and BE intersect at G. Show

that the midpoints of AG, BG, D and E are vertices of a

parallelogram.

Answers for Test Items - Chapter 6

1. a. 1

2
b. - 1

7
c. x' . -1 x + 1

e. 2 1
7

f. 3 : 1 1 or 2 : 1

7
g. (P(x) 1 - 1 < x < 3)

2
d. x = - 2x' + 2 h. (P(x) I - 1 < x' < 1)

2 2
i. {P(x) 1 x = 0)

2. Using (A, B, D) as

base, the coordinates

of C are (1, 1) of

E (1, 1), of F (1, 1).

An equation for'E5'

is (1) x + y 1:

for <AT>: (2)y = 1 xj for <AF>: (3) y = 2 x.
2

i
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1
Solving (1) and (2) shows coordinates of G to be (7, 7).

Solving (1) and (3) shows coordinates of H to be (, -).

Since the coordinates of D, H, G, B are respectively

0, 1, 2, 1 it follows that DH=HG=GB.

3. (a) Sin,:%.e ABED is a parallelogram the A, D, B- coordinates

of E are (1, 1). Since <CF>P<AD>all y-coordinates of

points on CF are b. represent F coordinate as (x,b).

(b) Slope of <BC>= b;1 = slope of<EF>= b:1 x-1 = a or x=a+1.

(c) Slope of<AC> = b; slope of<DF>= b
AC

n
n DF .

4. Slope of <AB>= 6 or 3.
4; 2

Equation of .AB'-= y-3 = 3 (x-6). This equation is satisfied
2

by (100, 144), since 144 - 3 = 3(100 - 6). Therefore
2

A, B, C are on the same line.

5. An equation for <AE> is (1) 2x + y = 2.

An equation for <DE> is (2) x + 2y = 2.

H has coordinates ( -, 1), the solution of (1) and (2).

An equation for <EC> is (3) 2x + 3y = 6.

An equation for <BF> is (4) 3x + 2y = 6.

K has coordinates (
6

' 5

6
), the solution of (3) and (4).

5

The coordinator of 0, H, K satisfy y = x. Therefore

0, H, K are, collinear.

6. Let the midpoint of be K and let the midpoint of BG be L.

Since the medians meet in a point that divides each median,

from vertex to midpoint, in ratio 2 : 3, AK=KG=GD and

BL=LG=GE. Since 15and LE bisect each other KLDE is a
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CHAPTER 7

REAL FUNCTIONS

Time Estimate For Chapter: 14 days

This chapter he.s three main objectives: (1) Review and

extension of the mapping concept, (2) Examination of several

basic mappings whose domain and range set are subsets of the

real numbers--using both algebraic end graphic methods--and

(3) Introduction to the operations of addition, multiplication,

and composition of real functions.

Formally, a mapping is an ordered triple (S,T,h) where S

is a set, T a set, and "h" represents a process which assigns

to each element s of S (the domain) one and only one element t

of T (the codomain) called the image of s. For brevity, mappings

are often named with a single letter "f," "g," "h," etc.

However, it is critical that the domain end codomain be clearly

understood in each discussion of a mapping. A mapping is one-

to-one if and only if no element of the codomain serves as the

image of more than one element of the domain. A mapping is onto

its codomain if and only if each element of the codomain serves

es the image of some element of the domain.

A mapping (S,T,h) is indicated

h: S T

and individual assignments are indicated

sh t or h (s) = t.

Because it is commonly used by mathematicians, the term "real

function" is introduced to refer to mappings with domain and

799
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codomain some subset of R, the real numbers. The word "function"

is synonymous with the word "mapping"!

The chapter should be completed in 14 class days.

7.1 Mathematical Mappings (1 day)

The purpose of this section is review of the mapping concept

and notation.

Answers to questions in the text:

First set: (1) Domain is all postal addresses in U.S.

(2) Codomain could be any set of numbers

which contain the whole numbers like

54494, 10027, 07639, etc.

Second set: (1) Yes. Construct a line through the point

of Al parallel to A
3'

Take as image the

intersection with A2.

(2) Yes. Same process as in (1) reversed.

7.2 Exercises

1. (a) does. (Each element of S is assigned one and only

one element of T).

(b) does. (Unless your school has another grading system).

(c) does not--a has two images.

(d) does not--o has no image

(Note that f could easily be restricted to a mapping

by changing domain to Q \(o). But this then is a

6'0o 13
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different situation)

(e) does not--2 has two images.

2. (a) -10 (b) (c) 14 (d) 1; (e) 2

3. (a) 4 (b) -4 (c) (d) 154 (e) -2

26
4. (a) -12 (b) =.34 (c) 0 (d) -- (e) -6

(a) 24 (b) 8 (c) 5 (d) 324 (e) 12

5. (a) 12 (b) (c) 12 (d) (e) 0

(a) ±6 (b) (c) (d) ±156 (e) 0

7.3 Properties of Real Functions (1 - 1 days)

The function notation f(3) = 9 has been mentioned briefly

in chapter 2, so it should be slightly familiar. The phraseology

"f of 3 equals 9" is a shortening of the more correct "f assigns

9 as tie image of 3" or "the image of 3 under f is 9." The

short form might seem unnatural to students--in any case,

frequent use of the longer more more correct phrase will help

and also keep the meaning of the notation straight.

The assignment processes x x
2

and x ----1x1 do not

define one -to -one functions of R onto R. Here the importance

of determining domain and codomain clearly can be stressed

because both processes will give one-to-one function of R>0 onto

R>0. Sometimes these restricted domain and codomains will

suffice for problems to be solved, often not.

Answers to questions in text:

First set: (1) 0, 2, 7

(2) t
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Second set: -2 has no pre-image under x--12-.1x1

Third set: (1) Yes.

(2) No.

(3) No.

7.4 Exercises

1. (a) (i) 2, (ii) 7, (iii) 7, (iv) 4, (v) 29, (vi) 634.

(b) (i) ±8, (ii) -, (iii) +2, (iv) -, (v) , (vi) 0.

(c) (x E R: x > 2)

(d) No, -2 not an image

(e) No, f(2) = 4 end f (-2) = 4

(f) No, f(2) = f (-2) = 4

2. (a) (i) 0, (ii) -7i, (iii) 2, (iv) -5 (v) (vi)

(b) Yes, if g(a) = g(b), then -a = -b -- a = b

(c) R

(d) Yes, each element of R has an opposite and for each

x E R, -x g x.

(e) 0 (No others since x + x = = = 0).

3. (s) (i) -1, (ii) 0, (iii) 0, (iv) 0, (v) 2.

(b) (i) -2, (ii) 3, (iii) +1, 0.

(c) No, f (-1) = f (0) = f(1) = 0.

(d) (-2, -1, 0, 1, 2),

(e) No, range / codomain.

4. (a) No, many addresses have same zip code.

(b) No, 752,683 is not a zip code.

Range of z is set of numbers like 54494, 73469, 19927,

`99
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etc. (might not be all 5 digit numbers though. So

here is a good example of a range which does not have

e neat defining condition.)

8
5. (a) (i) 1, (ii) 14-0 (iii) 4-, (iv) 4., (v)

8 15(vi) ,

(vii) (viii)

(b) (i) (ii) 2, (iii) , (iv) 1, (v) , (vi

(c) Yes,

f(e) = f(b) = 1)* = = at therefore, b = a.

(d) (x E R: < x < 11.

(e) No, -1 f range but E codomain.

6. (a) Yes.

(b) Yes. For each x E R, -3K+ 6

(a) True.

(b) False.

(c) True.

(d) False.

7.5 Representing Real Functions ( li - 2 days)

222
221

To get started toward graphical representation of a function,

-it is shown that every real function determines a set of ordered

pairs of real numbers. When the points these pairs name are

located on a coordinatized plane, the resultant graph gives a

general picture of the behavior of the function: (1) where it

assigns positive number as images, where negative, and where zero;

(2) where it assigns greatest ,numbers as images and where smallest;

(3) which numbers are assigned as images and which are not; etc.

09r
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Perpendicular axes are used exclusively, but scales are not

always the same on the two axes--partly for convenience and

partly because the domain and codomain in applications are very

often differently scaled. For example, pressure might be given

in pounds per square inch and temperature in degrees centigrade.

After locating many points in the graph of x x2, the

graph is "completed as the pattern indicates." Caution that the

function might not behave so nicely. There will be exercises to

emphasize this point. Only experience, judgMent of the rule,

and careful and patient checking will allow one to know when a

graph "continues the pattern."

7.6 Exercises

Note: Use of a graph of x
2

to compute ,/x is dangerous

unless the graph is constructed with utmost care.

1. (a) (1.4, 2) (b)

(e) (-2, 4)

(2.2, 5) (c) (2.4, 6) (d) (-2.4, 6)

2. (a.) 1.4 (b) 2.2 (c) 2.4 (d) 2.6 (Answers might vary here).

3. Answers will vary.

4. (a)

0
2
-T 3 -3

2 0 11 -7

9")
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(c) 17, -13,

5 (a)

3

0 2 4 6

0 2 4 6

6. (a) -4 -3 -2 -1 0 1 2 3 4 5
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(d) (i) 1, (ii) 1, (iii) 1, (iv) 0, (v) 0,

(vi) 2, (vii) 2, (viii) -2,

(e) The actual graph of p should look like

where 1,--" indicates the interval (a, b] where a does

not belong but b does.
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9. (a) no (b) yes (c) no (d) yes.

10. No vertical line intersects the graph in more than one point.

11. (a) no.

(c) no.

(e) yes.

(b) yes.

(d) no.

(f) no.

12. No horizontal line intersects the graph in more than one point.

13. (a) no (b) yes (c) yes (d) no.
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7.7 Composition of Functions (1 - 1? days)

In this section the study of function algebra is begun by

considering the operational system (F,o) where F is the set of

all functions from R to R and o is composition. Because we want

to study a whole collection of functions at once, we require

that they have the same domain and codomain R to avoid continual

worry about existence of gof as an element of F. (F,o) is not

a group--a fact which comes out in Section 7.9.

7.8 Exercises

1. (a) 90 (b) 45 (c) 99.9 (d) 81 (e) 49.2

(f) 30 (g) 15 (h) 33.3 (i) 27 (j) 16.4

2. (a) (b) (c) (d) 2 (e) 1 (f) 1

(g) 3 (h) 1 (1) 1 ( ,j) 4 (k) 1 (1) 1

3. x h k hok koh

o -24.5 15.75 -8.75 -8.75

19 -5.5 34.75 10.25 10.25

-33 -57.5 -17.25 -41.75 -41.75

-17.25 -41.75 -1.5 -26.0 -26.0

3.14 -21.36 18.89 -5.61 -5.61

-2.7 -27.2
1

1q.05 -11.45 -11.45

Yes

091
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n mon nom

0 0 -126 -7

43 774 36 648 '767

-15 -270 -22 -396 -277

12 216 5 90 209

No

5. No (gee 4)

6. (a) 64 (b)

7. (a)
(1) 14,

304 (c) 244 (d) 64

(ii) 20, (iii) 8, (iv) 1,

(vi) 5, (vii) 4, (viii) 6.

1

(c)
(i) $1.10

(d) jI

8. (a.) $ .15

$ .13

$ .52

$3.00

2

( )

4 5

204 (iii) 80

(1)

(2)

(3)

(4)

(b)

t

3.

(not tax)

$ Cost

clo

090
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9. (a) (i) 96.00 (b) (1) 0 (v) .02

(ii) 32.10 (ii) 0 (vi) .02

(iii) 762.01 WO .01 (vii) .03

(iv) .01

(c)

fr---
e..i.ea

.

A AR Arl Cos+

10. (a) (i) 2

(ii) 7

(iii) -4

(b) (i) 0

(ii)

(iii) -2

(c) x-g.(24x

(d) x-1:24x

11. n---)$.50n + $.40n=$.90n

7.9 Inverses of Real Functions (2 days)

RescmgLES
114 /ft fuNerio/4

Clearly a function which is not one-to-one can have no

inverse since this inverse would have to assign two images to a

single domain element. X_h from R to R has no inverse

because that inverse would be required to assign -2 and 2 as the

image of 2.
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It is not so clear that there are one-to-one functions with-

out inverses) that is, a function must be both one-to-one and
1

onto to have an inverse. The function x----)177TI maps R

one-to-one onto (-1, 1), but not onto R. There are many functions

which reverse the assignments of f and thus satisfy

gof = JR

but none which also satisfy

fog = JR,

required to make (F,o) a group. The work here becomes ticklish

and somewhat messy because we are carrying around R as a codomain.

We are, however, able to rescue the situation in terms of

the more general inverse of a function as contrasted with the

inverse of an element in (F,o). Of course, when f E F has an

operational inverse, it coincides with the inverse of f as a

function. The proof which follows the definition of a function

inverse may be reasonably soft-pedaled in the sense that it

observes generally what has been noted several times in examples,

both in Course I and in Course II.

The notion of equivalent functions is introduced here to

recognize the fact that in many situations, the range is more

important than the entire codomain. This may seem more a

terminological than an actual problem. In any case, equivalent

function is not a central notion at this point, except to enable

us to say that a one-to-one function is always equivalent to a

function having an inverse. In this and all later function

algebra, it will be important to remember that f = g <

f(x) = g(x) x in domain f, and the domain and codomain of f
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and g are identical.

7.10 Exercises

1. (a) not one-to-one, onto, but no inverse.

(b) one-to-one, not onto, no inverse.

(c) one-to-one, onto, inverse.

(d) not one-to-one, onto, no inverse.

(e) one-to-one, not onto, no inverse.

2. (b) (b', c', d', e')

(e) (10, 11, 13, 16, 20, 25, 31, 38)

3. (a) Yes - Each image has a unique pre-image.

(b) Yes - Codomain equals range.

(c) Yes x x

-1, 1
/4. (a ) x

h
3-x

(b) - (c)

S.

"4

lr Ak

/
.4

/
/
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5. (a) Yes, each image has a unique pre-image.

(b) Yes, codomain equals range.

(c) Yes x --Ea? 2x.

6.

(s) Yes, each image has a unique pre-image.

(b) Yes, codomain is equal to the range.
i

1
(c ) Yes - x ----1 ffx

7. j bisects angle between f and f- 1 of f is image of el

under reflection in j.

8. (a) No, not one-to-one

(b)

(c) R o for a domain and codomain.

<

9. (a) No 0i) = f(1)

(b) No f(x) 1 0

(c) No not 1 - 1

(d) By picking one point in each interval (0, 1), 2),

etc. for domain.
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10. (a) -el not defined.

(b)
1 4, 1

3-y 2 22, ., 72- - , -2,

(c)

(d) Yes, each image has a

unique pre - images

Yes, codomain equals

range.

(e) Yes

r
-1

1

2 2

-5' 5-**

domain R \to)

11. (a) (1) 0 (6) o

(2)
1

(7) 1

(3) 7
1

(8) -1

(4) (9) 2

(5)
2

(10) -2

(b) (1) o (6) o

(2) 1 (7) lz

(3) -1 (8)

(4) 2 (9) 3-

0) -2 (10)
2

3
(c) Yes

(d) Yes

(") No

(f) No
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7.11 [f + g] and [f - g] (li - 2 days)

This section introduces two new operations on functions- -

operations which are definable primarily because their domain

and codomain is the real numbers. The way in which the function

+ g) assigns images is wholly dependent on the possibility

of adding any two real numbers. Similar remarks are appropriate

for [f g] and [f g] and [1k]. it is not possible to define

Er - on the set of all functions from W to W because

f(x) - g(x) might not always name a whole number.

It is most important to emphasize that addition, subtraction,

multiplication, and division of functions are operations on F

distinct from composition - -just as maximizing, lcm, and other

operations were defined on W, distinct from + and . If f and

g are linear and have been graphed, the graphs of [f + g] and

Er - g] are obtained by examining the points where f and g are 0.

For instance, if f(x) = 0, then [f + g] (x) = g(x) and if

g( y) = 0, then [f + g](y) = f( y) (x, g(x)) and (y, f(y)) are

two points in the graph of [f. +g] and the linear graph of

[f + g] is determined.
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7.12 Exercises

Note: Exercise 9 should be covered. Its result is used later.

1. (a) (i) 3 (ii) 3 (iii) 3 (iv) 3 (v) 3

(vi) 0 (vii) 1 (viii) 1 (ix) 162 (x) +23

(b) (i) 3 (ii) 4 (iii) 4 (iv) 19; (v) 26

(vi) . 3 (vii) 2 (viii) 2 (ix) - 13 (x) 20

(c) (i) 3 (ii) 3 (iii) 3 (iv) 3 (v) 3

(vi) 3 (vii) 3 (viii) 3 (ix) 3 (x) 3

(d) (i) 3 (ii) 4 (iii) 4 (iv) 19; (v) 26

(vi) -3 (vii) -2 (viii) -2 (ix) 14 (x) 20

(e) (i) x (x( + 3

(ii) x Ix' + 3 or 3 + Ix(

(iii) x 3 - !xi

(iv) x Ixi - 3

(v) x 3

(f)
C.P4:14.1

/ //

/

239

/
MNIPMEM
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[h + k] [h-k] [k - h]

0 0 -1 -1 1 -1

7 343 20 363 323 -323

12.5 1953.125 36.5 1989.625 1916.625 -1916.625

-14 -2744 -43 -2787 -2701 2701

-3 -27 -10 -37 -17 17

(b) (i) -1

(ii) -1

(iii) 2744

(iv) 374

(v) -343

(vi) -25

(c) (i) x-11.±-4xs + (3x - 1)
x.111:1190x3 (3x - 1)

(iii) (3x - 1) + xs

(iv) x (3x -1) - xs



f

Note: In order to obtain the graph of [f + g](x) uring

the graph of f and g, use the following proceedure. Construct

several vertical lines intersecting the graphs of f and g. If

f(x) and g(x) are both positive then measure f(x) with a compass

and place the point of the compass on the intersection of g(x)

and the vertical line and inscribe an arc intersecting the

vertical line above g(x). This point will be contained in the

graph of [g + f](x) or [f +.g](x). If f(x) and g(x) have different

signs then the negative sign must be subtracted from the

positive value. If f(x) and g(x) are both negative they must

be added negatively.

2111



- 237 -

Ave

5

x 1 2
1 2 3

10
-TT

p(x) 1 1 1 2 2 2 3 3 3 4

p(x) 2
-

1
...,0 1

3- 01/4,

2
3-

1
3-

,..
1/4,

, 2
3-



6.

8. (a) (i) (x + 2) + 3x

(ii) 37 - x'

(iii) [(x + 2) + 3x] - x'

(iv) (x + 2) +(3x - xa)

[f + (g + h](x) = f(x) + (g + h](x)

f(x) + (g(x) + h(x))

(f(x) + g(x)) + h(x)

(c)

(b) Yes.

(d) Yes, it is.
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9. x---)p 0 for all x.

10. (a) (i) 0

(ii) 0

(iii) 0

(iv) 0

(b) x 133)0

(c) Yes, because h + [-h] = 0

(d) x
h+ o

(e) Yes. Self-evident

(f) Yes, satisfies all group

properties.

12. Yes. [f + e;] (x) = f(x) + g(x) = g(x) + f(x) = [g + f] (x)

No. [f - g] (x) = f(x) - g(x) g(x) f(x) = [g - f] (x)

therefore, [f - g].(x) [g - f] (x)

7.13 [f g] and [i] (1 - 1 days)

The problem with defining [g] for all f, g in F is the fact

2,1
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that g(x) may be 0 for some x and thus [g)(x) fAl2( cannot always

be defined as an element of F. [p is a function with domain all

x such that g(x) 0.

7.14 Exercises

1. (a) (i) 0

(ii) 12

(iii) 16.8

(iv) -25.2

(v) -54

(b) (i) 0

(ii) 24

(iii) 47.04

(iv) 105.84

(v) 486

(c) (i) undefined

(ii) 6

(iii) 6

(d) (i) 0

(ii) 4

2.

(vi) 0

(vii) 2

(viii) 2.8

(ix) -4.2

(x) -9

(,,i) 0

(vii) 24

(viii) 47.04

(ix) 105.84

(x) 496

(iv) undefined

(v)

(vi)

(iii) 5.6

(iv) -18
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3. [f g]

laI
2

-20t

3

0

[f g]

-78

-340

E R: > 1), (Y E R: 0 < y < 1), (i)4. (e) (y y

(b) 120 + 1 1 2 2 3

1 1 1
1 7 7 7

5.

1
11-7-71-

3

1
7

4

1
4.

4

1
4.

3
f-

2
7

3f

2
7

(a)

(b)

(i) 53

(ii) 395

(iii) 87.5

(i) 53

(ii) 395

(iii) 87.50

2/'

(iv)

(v) 1

(vi) 1

(iv) 53

(v) 395

(vi) 87.5

1



6.

;
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7.

Note: It must be noted that this function may not be

defined for all values of x. The above graph

shows approximate values of the fUnction i.e.:

h(x) = h(x) 1

h(x) = /771 -;
h(x) = 2 ; Fich ;."

8. (a) [f [g h]](x) = f(x) [g 11](x)

= f(x) (g(x) h(x))

= (f(x) g(x)) h(x)

9.

10.

b) is associative.

x f g h [f g] [f h] [f g] + [f h]

2 8 5 4 4o 32 72

0 0 -1 o 0 0 0

-2 -8 -7 -4 56 32 88

-11

f [g + h]

72

0

88
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11. Distributive property of over +.

12. Commutative Distributive

Associative Inverses

Identities x--> 0,

Cancellation

After this exercise a good class discussion might arise

from comparing (F, +, ) to the structure of number systems.

It might also be interesting to examine (F, +, 0) and

(F, 0). Let the students experiment and arrive at

conjectures of properties--no fixed list need be developed

at this stage.

13. (a) (i) 9, (ii) 39, (iii) -33.

(b) x-24(6x + 9)

(c) (i) 0 (ii) 75 (iii) 147

(d) x--1-3E-:03x2

(e)

The operation introduced here is scalar multiplication in

the group of real functions (F, +). The inclusion of this

new external operation makes the set of functions a

vector space, but this is for the future.

(i) 9 (iv) 9

(ii) 114 (v) 114

(iii) 114 (vi) 114

7.15 The Square.Root and Cube Root Functions (2 - 3 days)

This section looks at square and cube root assignment as

a process defined at every point of the line (positive x fors/),

not as the random assignments V2, V5, A/7, I4 etc. which are
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usually generated by equation solution. The graphs of V and 3s/

are generated using symmetries in y = x.

7.16 Exercises

1. (a) 2.2

(b) 2.4

(c) 2.6

(d) 1.6

(e) 2.1

2. Answers will vary

3. (a) 2

(b) 1.8

(C) 1.9

(a) 1.6

(e) 1.3

4. Answers will vary.

5 . (a) x < 0 or x > 1

(b) 0 < x < 1

(c) x = 0, x =1

(d) x 0, x =1

(e) x>1

(f) 0 < x < 1

(g) 0< x < 1

(h) x > 1

(i) x 0, 1

(answers- will vary)

(j) -1 < x < 0 or x > 1

(k) x < -1 or 0 < x < 1

(1) x = 0

(m) x = 0

(n) -1 < x < 0 or x > 1

(o) x < -1 or 0 < x < 1

(p) x < 0 < x < 1

(q) -1 < x < 0 or x > 1

(r) x = 0, ±1

95,(1
A. ,v
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11 (e) 11

10 (f) 7V3

3 (g) 10./5

4 (h) -3 44

-

(i) 22 (m) 446

(j) 2 (n) 42

(k) ;415 (0) ;415

(1) It/2 (p) -4 4'6

7. (a) 742 (f)

(b) -3 (g) 10 + 543 - 242 - 6

(c)
1-1/6 (h) 2415 - 5410 + 446 - 20

(d) 42 (i) -1

(e) 90 (j) 26

8. g(x) = x3

g(ab) (ab)3 = (ab)(ab)(ab) = (aaa)(bbb) = a3b3 = g(a) g(b).

f is multiplicative.

Tab = fa 4b iff ( 4ab)3 = ( 4a 4b)3, by definition of .

But,

(4ab)3 = ab by definition of 4 .

And,

Ra ,ft )3 = (4a)3(4b)3 by multiplicative property of g.

Now, (403 = a end (4b)3 = b.

5'ab =4a . 41) .
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7.18 Review Exercises

goh [h + g] [h g]
1. x h g

o

1

-1

al
2

41-3

12

-19

1/2

i -31

0

1

1

25
-T

361
-9---

144

361

2

9

-1

1

-3

4

-41
-7

23

-39

Si2 - 1

5

-1

1

1

23
2

71 3

-1

2

-2

41

238
-g-

167

322

2,/2 + 1

14

0

1

-3

25

14801

9

287

721

3

17

27

3312

14079

4../2 -2

45

2.

3.



4. (a) no yes

(b) 0 -1

(c) 3 1
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5.

(d)

(a) (b) (c)

(1) No, 111-11 = 1 No, ?--) -2

(2) Yes Yes
g-1

x. 4x

(3) Yes Yes x
h-1 117x + 17

(4) Yes Yes x
k1

x - 4/2

(5) No, J.1 3.14 No, ?------2> 2

(6) Yes Yes
n-1 1x Ip x

5

6. (a) 7.51 (g) 3.14 (1) -3360

(b) -2197 (h) 15.7 (m) 50,000

(c) 0 (i) -153 (n) 50,000

(d) 0 (j) -425 (o) -340

(e) 3.14 (k) 3390 (p) -81

(f) 1.25
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7 (a) x [h n] 22x - 289 (e ) x 5x4

( f ) x 11a2210.25x3

(g) x

(h) x x + x/2)3 or

x x3 + 3)(342 +

6x + ai2

(b) x -ILL-21_,85xs - 1445x

(c) x-1222415.7

(d) x 3.14

Suggestions for test items for Chapter 7

I. Let the following functions from it to it be as follows:

f: x + 2

g : x

h: x---,5x - 3

x f g h fog h+f hg h
g

gof g-f 411

5
ir

a-- w7-

II. Graph the following functions on one coordinate axes:

(a) A: x--) x - 2

(b) m: x---, 2x2 - 5
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(c) n: x---,2ixl + 3

(d) + (m+n)](x)
Hint: Use addition of

ordinates

III. (a) Graph the following functions on one coordinate axes:

y = x + 2, y = x3, y

(b) From the above graphs, estimate the solution of the

following to the nearest tenth:

1) 46F x + 2 5) x3 > x + 2

2 ) 45T> x + 2 6) x3 < x + 2

3 ) 4 6 7 < x + 2 7) ' ' 5 > x 3

4) x3 = x + 2

IV. For the graph of f given below -

a) Give the rule for f.

b) Is this function one-to-one? Explain why or why not.

c) Is this function onto? Explain why or why not.

d) Whet is the image of 3?

e) What is the pre-image of 5?

f) Sketch the graph of -f on the same coordinate axes.

1g) Sketch the graph of ? on the same coordinate axes.

I I I



Solution to chapter test

T.
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g h fog h+ f h g h
f gof g-f

5 13 25 13 57 13 325 169 -27

_64 25 361 -104 379 -79 -37,544 -104 625

.1.6. -7 Tb

-7) 3 3 27 -71- -75--

1 16

286 416

II. (a) (d)
C +OA* )3 2c.

.16
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(b) 1) - 3.6 5 ) y > 1.5

2) x < z - 3.6 6) x < 1.5

3 ) x > - 3.6 7 x < -1 or 0 < x < 1

4) 1.5

07."1
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IV. a) f: x----bplxl 4 2

h) No one image has two pre-images.

c) Nn codomain '( range

d) 5

e) i3

(f) - (g)

irronMftk

I
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Chapter 8

Descriptive Statistics

Time estimate for chapter: 14 days with review

Introduction (Time estimate for 8.1, 8.2, 8.3 = 2 days)

The purpose of this chapter is to review and extend the

material begun in Chapter 5 of Course I--with special emphasis

on techniques for collecting statistical data, summarizing it

. by means of graphs and tables, and analyzing it by means of

measures of central tendency and dispersion, such as the mean

and variance.

The concepts of probability which were introduced in

Chapter 5 of Course I will be picked up and studied further

in Course III. However, especially in connection with the

exercises in 8.3, the ideas of an experiment, a sample, a

random sample, sample space, probability, etc. can profitably

be mentioned and noted.

The experiments and problems of Section 8.3 (as well

as the illustrative example of Section 8.2) are key problems

in the sense that they are referred to and continued

throughout the chapLer. For that reason it is important that

students retain copies of their original data--and whatever

they do with the data--throughout this chapter. To aid

teaciers in choosing problems to be assigned, a list of

problems dependent on others will be found at the end of this

commentary.

Though some of the computation called for--especially
Cr7(1
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in the latter parts of the chapter--may seem time consuming

and tedious, it provides an excellent opportunity to review

and drill on important arithmetical computational skills. It

is worthwhile, for example, to compute means and variances

by both the long method and by the short-cuts of Section 8.10.

8.2 Examples of Sets of Data and Their Graphical Presentation

The graphic techniques of this chapter are the frequency

diagram, the cumulative frequenu diagram, the frequency

histogram, and the frequency and cumulative frequency polygons.

It is important that students be able to relate these to each

other and to the data tables from which they are obtained. One

possible technique might be to start with one set of data, for

example that of Table 8.1, and construct in succession a

frequency diagram, a cumulative frequency diagram, a frequency

histogram, and finally, frequency and cumulative frequency

polygons. (Note that the frequency polygon may be drawn

directly on the graph of the frequency histogram, as shown in
. _

Figure 8.5). While it would be possible to construct a

cumulative frequency histogram, it is less frequently used

than the others and is not discussed in this chapter.

One useful property of the frequency histogram is that

since each bar in the histogram has the frequency for its

height and the measure for its base, the total area of the

histogram for a distribution is equal to the total number of

observations. This might be pointed out in passing for the

qi-Nn
it
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benefit of the better students.

The definitions of range, median, mode and quartile

should be discussed and understood. Before computing the

median the data must be ordered. Also, be sure to stress

the fact that the frequency must be taxen into consideration.

Example: The set (1,1,1,4,3) has median = 1,

not 3 as does (1,3,4)

In definition 2, the phrase "the middle

measure" may be misunderstood without this

extra discussion.

Note that a distribution may have more than

one mode.

Note also that the xth percentile is that

point on the cumulative frequency graph

at or below which there are x percent of

the measurements. For example, in Figure 8.6,

there were 9 bulbs (or 18%) which had a life

of less than or equal to 975 hours, so 975 is

the 18th percentile.

8.3 Exercises

Students should not be expected to do all the exercises

in this section. At least two of Problems 1-5 should be

assigned, including either Problem 3 or Problem 4, either

Problem 6 or 8, and at least one of 9-11. In this section

as 'in succeeding ones, how many and which problems are assigned

must to a large degree depend on the teacher's judgment of I
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the students, comprehension of the material. It may be

desirable to assign some of the exercises in this section

later in the chapter.

Solutions to Problems
la.

Number

of

3

2

Sentences
1

Cum. %

100% = 40

75% = 30

20

25% = 10

ISall Ss1_fi _IL s

10

11 II 11111 .. 11 .1 11 , I. ..1 . .1, . 1,

Length of Sentence (number of words)

C Freq. CUMULATIVE FREQUENCY GRAPH

/, 30 4y10

Lower Median Upper
Quartile = =28 Quartile
= 19 = 44

Range: 73; Median: 28; Lower Quartile: 19;

50

st .
60

Length of
(no. of

Upper Quartile:

14 4

70

Sentence
words)

44
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2. To estimate the mean: Each card has an equally likely

probability of being drawn. Hence the mean (expectation)

for a draw of one card would bei3 (1 + 2 + 13)

1/13 .14N
13k--2---1 = 7. For three cards drawn, with replacement,

the expected value for the sum would be 7 + 7 + 7 = 21.

We may use this as a good estimate for the median without

replacement, assuming the distribution to be symmetric.

(This exercise might be a good one to do in class.

Students should actually obtain the mean by doing the

experiment; the above calculation is for the teacher's

benefit and should not be presented to the class.)

3. Since the probability of beads is 1/2, the expected

sample mean is 1/2 - 20 or 10, so the example median may

be estimated to be 10.

4. Since the maximum sum is 18 and the minimum sum is 8, the

expected sample mean is 10 1/2, so the sample median may be

estimated to be 10 1/2.

5. We would expect each digit of the set (0, 1, 9) to be

equally likely (i. e., to occur approximately the same

number of times). 5(c) asks for summarizing. Have the

students make a frequency table, a frequency histogram

and a frequency polygon.

6. Part of the purpose of this problem, and of Problems 9-11,

is to let the students construct a table completely on

their own, with no information (other than the data) being

given. At least one problem of this type should be
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assigned as a home exercise.

7-8. Answers are in the text. (Figure 8.6).

9-11. Answers will vary. Students, solutions should be

compared and discussed.

8.4 The Symbol and Summation (Time estimate for 8.4 and
8.5 = 2 days)

This section will give students their first formal

introduction to summation and use of the symbol Since

"7" is used extensively in the rest of this chapter and is

essential for much later work in mathematics, it is important

that this section be covered carefully. However, the teacher

should keep in mind that this is only a. first introduction,

and should not expect all students to exhibit perfect

comprehension. This will come with practice and review in

this and later courses.

Some enrichment material could be introduced here.

5 7

For example, what is the meaning of 37x2i

i=1 i=3

8.5 Exercises.

All parts of Problems 1 and 2 should be assigned and

gone cx.isr in class. Problems 3 -7 involve derivation of

various properties in summation. Since these properties are

used in later work, the results of these exercises should be

stressed. Every student should have a good understanding of

how the results of Problems 3, 4, and 6 are obtained, and in
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particular how these results depend on properties of the

real numbers.(commutativity, associativity, etc.). Problem 7

is a combination of the results of the preceding exercises.

While not all students will be able to do this problem

unaided, it should be assigned (perhaps on a "try it" basis)

and gone over in class.

Answers to Exercises

1. a. 15 b. 71 c. 75 d. 35 e. 15 + 4k

2, a. 28 b. 70 c. 30

3. L,kxi = (kx1 kx2 kx3 kxn)

i = 1
= k(x + x2 + x3 + ...+ Xn)

Zxi

4. 7(ai + bi) = (al + bl) + (a2 + b2) + (a3 + b3) + ...+ (an + bn)

i=1
= (al + a2 + a3 + ...+ an) + (b1 + b2 + b3 + bn)

jai +L-bi

i=1

a. If n = 3, we have
3

L(ai + bi) = (al + bl) + (a2 + b2) + (a3 + b3)

i=1
. (al + a2 + a3) + (b1 + b2 + b3)

3

jai + Lbi

i=1 1=1
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b. The summation of the sum of two sets of terms is

equal to the sum of their separate summations.

5. 7 (ai - bi)= ai + (-bi)]

1=1 i=1

Lai + 7(-b ) (by Exercise 4)

i=1 i=1

= n + ( -:51) (by Exercise 3)

i=1 1=1

(def. of Subt.)
Lan

7b
i

i=1 i=1

6. + k + k + k + ...+ = nk
i=1

n terms
n n

7. L(x, - m)2 = /(34 - 2xim 4- m2)
i=1 i=1 J-

n

=
/

x
2

L2xim + Lana (by Exercise 4 and 5)

i=1 i=1 i=1

= 7x2 - 2m7x + Sna (by Exercise 3)L
i=1 i=1 i=1

= Tx2i - 2m + nm2 (result of Exercise 6)

i=1 i=3.
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8.6 The Arithmetic Mean, Its Com.utation and Properties
Time est to ne u ng ;. an. ;. ays

In this section the mean is introduced, using the

summation symbolism developed in Section 8.4. Students may

question the necessity of this new statistic, since they

are already familiar with the median and the mode. It might

be desirable to indicate (without attempting to give reasons)

that the mean is mathematically more useful than either the

median or the mode. In fact, work from this point on will

(of these three stattstics) be mostly concerned with the mean.

Students should realize that the formula for the mean

using frequencies of measurements is merely a computational

device that comes directly from the basic definition. One

way of introducing this might be to start with several

measurements eJf one value and one or two having other values.

For example, suppose xl = 3, x2 = 3, X3 = 3, x4 = 3, X5 = 8.

Then from the definition we can write

X1 x2 + x3 + x4 + x5 8

3 5

Students will see immediately that we could write

= 14±1

4 is simply the number of measurements having value 3, or the

frequency of that measurement.

It should be emphasized that the addition and

multiplication properties of the mean discussed in this section

are direct consequences of the definition and the summation

properties developed in Section 8.4. The usefulness and the
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importance of these properties should again be stressed at

this point. Again, they are useful in computational problems,

and one or two of these problems might be done in class at

this point in the development.

Although the theorem at the end of this section is

important, the teacher should not spend too much time on it.

If necessary, as a "convincer" or motivational device to

begin this theorem, students should calculate the sums of the

deviations from the mean (for a relatively small amount of

data) to see that the theorem actually does hold.

For enrichment purposes you may want to introduce at

least two other "mathematical averages ". They have

interesting properties and there are interesting relations

between them.

The geometric mean of a set of n numbers is the nth

root of their product. For example, the geometric mean of

the numbers 4 and 9 is +.14 x 9 = 6. (You will notice that

for the case of two numbers the geometric mean is what is

more commonly called the mean proportional.)

The harmonic mean of a set of numbers is the reciprocal

of the arithmetic means of the reciprocals of the numbers. For

example, the harmonic mean of the two numbers 4 and 9 is

1 2 72 72
= I---r = 9 4 = 13 = 5.5 (approx.)

4 + 4 + 7
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The harmonic mean is used in problems involving

rates. For example:

(1) If a man drives a distance of 6o miles at an

average rate of 30 mph and returns over the

same way at 20 mph, what was hie average

rate of speed for the round trip?

(2) One man can do a job in 3 days and another can

do it in 2 days. How long will it take the two

men to do the job if they work together? What

is the average of their ratee of work?

Exercises can be given to find the arithmetic, geometric,

and harmonic means of two or more numbers and to compare them.

A culminating problem for such enrichment work might

be to pose the problem of proving the following theorem.

"Prove that if two positive numbers a < b are given:

(1) The geometric mean of a and b is the geometric mean

of_ their harmonic mean and their arithmetic

mean. (or GM = .11111 AM)

(2) a < HM < GM < AM < b."

Two interesting discussions that can be developed about

the concept of averages are: (1) What are the qualities that

an average should have? (2) Which average is the best?

Some criteria for an average that might be cited are:

it should be near the center of the distribution; it should

be easy to compute and comprehend; it should depend in some

way on all the measures; it should be stable with respect to

r;`(1
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grouping; etc.

The discussion of averages might elicit situations in

which an average is not called for. For example: The

height of a bridge over a river; the weight capacity of an

elevator; comparing two cities by means of their mean annual

temperatures; etc.

The general topic of statistics, its uses and misuses

can give rise to some valuable discussions. Some good

references for this topic are:

Wallist The Nature of Statistics
Roberts 7-Collier Books)---paperback

(Chapter 4: Misuses of Statistics)

Mitchell and Algebra - A Water of Thinking
Walker (Harcourt',l-BFace and Co.)

(Chapter XI: Statistics)

Walker and Elementary Statistical Methods
Lev

8.7 Exercises

These exercises are primarily designed to give students

practice in working with means, and to broaden their

understanding of the meaning and the properties of the mean.

The first five exercises involve transforming sets of data

and the effects of these transformations on the means, and

should be done by all students. Problems 1 and 5 lead to

the generalization asked for in Problem 7. All students

should try to make this generalization, but not all should

be expected to prove it. The teacher should point out again

the importance of the summation material in doing this problem
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and Problem 19.

Problems 8-14 are largely computational and a selection

of these should be assigned for homework. Problem 17 is a

review problem. Problem 18 should be given, as it requires

some thought about the basic definition of the mean and a

little algebra. Problem 19 may be considered optional,

although better students will profit by trying it. In a

good class this problem might be given extra attention.

Answers to Exercises

1. Mean o 1st set of data = 5.

Mean of new set of data = 12.

2. Mean of new set of measurements = 10.

The mean of the new set of measurements is the sum

of the means of the original sets.

3. Mean of 1st set = 5. Mean of new set = 35. The mean

the nclw set is 7 times the mean of the 1st set.

4. Mean of 1st set = 6. Mean of new set = 47. The mean

of the new set is 5 more than 7 times the mean of the

1st set.

5. a. 38.3 b. 101 (to the nearest degree)

6. Mean = 35.4, Median = 36.

Watch for confusion on wording here. Merely find the

mean of the distribution and the median. "Number of

students per class" and "number of students" are not

to be construed as being special problems.

9',51



-267-

7. If M
d
= mean of domain; M

r
= mean of range, then

Mr = CM
d

+ h.

Proof: If we let yi = CXi + h, then

Mr y A= 7CX + h)

i=1 i=1

1 (C Xi= + t.n
1=1

1 (CTX + hn)
n

i=1

= C A.' X + n h

±=1

by Problems 3 and 4,
Section 8.5

by Problem 6, Section 8.5

by properties of real
numbers (assoc., commut.,
etc.)

by properties of real= CM
d
+ h numbers, definition of Md.

8. The mean of the 80 numbers is 1093.6.

a. The means of the 10 rows are 1078, 960, 1158, 1172,

10)48, 1044, 1106, 1208, 1106, 1056. The mean of

these 10 numbers is 1093.6.

b. An easier method might be to average the 5 columns,

then find the average of these 5 numbers.

9. Mean = 34.75

10. Answers will vary.

11. The mean of the ungrouped data (to the nearest tenth) is

56.1. From the frequency table, a mean may be calculated

by the method of Example 2. Answers will vary slightly
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but should be close to the mean calculated for the

ungrouped data,

12. Answers will vary.

13. The mean (to the nearest 10th) is 41.5. The median is 45.

14. Mean = 5.65

15. Mean = 75.166

16. a. $14,500 b. $96.67

c. No, because the frequencies are different

17. a. 11.5 - 12.5, 12.5 - 13.5, etc.

b.

to

11.5

400

300

200

100

11.5 13.5 145 15.5 165 1-15

Frequency Histogram

11 12 13 14. 15 16 17

Cumulative Frequency Polygon

/v1
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18. The sum of the 6 observations given is 2104. If the

2104 x
missing observation is x, then - 350.

Solving, x = 346.

19. 7 TO2 + n(Fi - a)2 = (xi2 - 2xiR + R2) + n(i72 - 2Ra + a2)

(recall Lxi =

i=1

8.8 Measures of Dispersion (Time estimate for 8.8 and 8.9 = 3 days)

= /xi! - 2R5ci + nR2 + nR2 - 2nRa + na2

= x 2 - 2/15? + 2n5i2 _ 2riRa + naa

= x 2 - a +

= /(xi2 - 2xia + a2) = (xi - a)2

The purpose of this section is to lead up to and then

introduce the variance and standard deviation by first

demonstrating a .1/.?,ed for a statistic for measuring dispersion of

data and then examining various possibilities for meeting this

need. Before the students hare read the text material, it might

be desirable to state the problem (relying on the examples of

Figure 8.7) and ask them for a proposed solution. Indicating the

mean in color may be helpful. At this time it is important to

discuss using the sum of the deviations from the mean as one

possible solution. Before giving a formal treatment as in the

text (using Theorem 1 to show that this sum is 0), the teacher

might use the following informal diagrammatic approach: Using,

for example, Figure 8.7 (b), indicate the mean (5) in color.
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Now connect by arrows the symmetric pairs of data; e. g. 4 and

6 are symmetric and 3 and 7 are symmetric. Since the elements

of each pair are the same distance from the mean, but in

opposite directions, the total deviation of each pair is zero.

In other woids, each pair "balances out", Hence the sum of

all the deviations is 0. For non-symmetric data it is not as

easy to show in this way, but the argument is essentially the

same: The sum of the left-hand distances from the mean equals

the sum of the right distances from the mean, so the sum of

the deviations must be 0. If this is the approach used, it

should of course bt followed by the formal treatment of the

text. If Theorem 1 was covered lightly before, this would be a

good point to go over the proof.

At some point either at the end of this section or of

the next, the teacher should check to make sure that the students

have a good intuitive understanding of what these new statistics

are describing in contrast to those that have already been

studied (that is, of dispersion versus central tendency).

Note that the students will need some knowledge of square

root to understano and compute the standard deviation. Section

14.7, Course I describes one convenient algorithm that may be

used to find square root. This can be taught quickly if stuOents

are not already familiar with it.

8.9 Exercises

These exercises will give the student computational

practice with variances and standard deviations and will lead him

215
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to discover properties for these statistica analogous to

properties he !as already found for the mean--namely, how the

variance and standard deviation are affected by adding or

multiplying the data by constants. As the first three problems

are entirely computational, the teacher may choose to omit one

of them, depending on the class. Problems 4 and 5 are discovery

exercises leading to the generalization asked for in Problem 5

(that adding a constant to the data does not change the variance).

All students should do either 4 or 5 and should try Problem 6,

and 6 should be gone over in class. Similarly, Problem 7 is a

discovery exercise leading to the generalization of Problem 8

(multiplying the data by a constant will result in multiplying

the variance by the square of that constant). All students

should do 7 and try 8.

The results of Problems 6 and 8 may be demonstrated

intuitively. If a constant is added to the data, the data is

merely "moved over" on the axis. The mean is increased by the

amount the data is moved--the additive constant--and the

dispersion, and hence the variance, is unchanged. Under

multiplication by a constant, the data is spread proportionately --

it becomes more (or less) dispersed--so that the standard

deviation will change proportionately.

276



(
a
)

(
.
b
)

(
c
)

(
d
)

(
e
)

(
f
)

(
g
)

(
h
)

(
i
)

m
e
a
s
u
r
e

4,
5,

5,
5,

6
3,

4,
6,

7
3,

4,
5,

6,
7

4,
4,

6,
6

1,
 2

,2
,

8,
8,

9
8
,
9
,
1
0
,

10
)1

3
3_

,5
,1

0,
16

,1
8

1,
4,

10
11

,1
4

2
,
5
,
8
,

1
2
,
1
3

n
5

4
5

4
6

5
5

5
5

C
c

5
5

5
5

5
10

1
0

8
8

3

r
a
n
g
e

2
4

4
2

8
5

17
13

11

R
/
n

.
4

1.
0

.8
.
5

1
.
3
3

1
.
0

3
.
4

2
,
6

2
,
2

5

x-
-.ii 1

-1
,o

,o
,

0,
1

2,
-1

1,
2

-2
,-

1,
0,

1,
2

-1
,-

3,
1,

1
_1

4,
-3

,-
3 

-2
,-

1,
0

3,
3,

4
0,

3
-9

,-
0,

6,
8

-7
,-

4
2,

3,
6

-6
,-

3
0,

4,
5

, 0

T
l
x
i
-

2
6

6
4

20
6

2
8

2
2

ig
7

T
hc

i-
21

.4
1
.
5

1
.
2

1
.
0

3
.
3
3

1
.
2

5
.
6

h
.
'
:

-
.
.
,
r ,

n
,

n -
5
0
2

(
x
i

1
,
0
,
0
,

0
,
1

4
,
1
,
1
,

4
4
,
1
,
0
,

1,
4

1
,
1
,

1,
1

1
6
.
9
,
9
,

4
,
1
,
0
,

9
,
9
,
1
6

o,
9

8
1
,
2
5
,
0

36
,6

4
4
9
,
1
6

4,
9,

36
3
6
,
9
,
0

16
,2

5
q

D
xi

-5
02

2
1
0

1
0

4
68

14
20

6
11

4
86

1
0

V
a
r
i
a
n
c
e

s
2

.4
2
.
5

2
.
0

1
.
0

1
1
 
3

2
.
8

4
1
.
2

2
2
.
8

1
7
.
2

1L
.

S
t
a
n
d
a
r
d

D
e
v
i
a
t
i
o
n

.
6
3

1
.
6

1
.
4

1
.
0

3
.
4

1
.
7

6.
4

4.
8

4.
1

1
2



- 273 -

2. a. Mean = (22 + 26 + 20 + 31 + 26). + 5 = 125/5 1 45.

Median 26.

b. Mean absolute deviation = (3 + 1 + 5 + 6 + 1) + 5 = 16/5 = 3.2.

c. Variance =
s.32. 4. 1

(6)2
1

- 14.4
5

d. Standard Deviation = %in-7 = 3.8 approx.

3. The measures are: 347, 1,51, 358, 345, 350, 353, and 346.

Deviations from the mean are -3, +1, 1, -5,.0, +3, -4.

The squares of the deviations are 9, 1, 64, 25, 0, 9, 16.

The sum of the squares of the deviation is 124.

The variance . 124/7 = 17.71

The standard deviation = .11-77r. = 4.21 approx.

Mean = (8 + 10 + 24)/3 = 42/3 = 14

)2. + (_4)2 + !,10)3_ 152
Variance 50,66

Standard deviation = x55:66 = 7.12 approx,

a. 5,7,21 Mean = 5 + 73+ 21
= 11

Variance = (-6)2 (-4)2 t-L122 152= = 50.66
3

Standard Deviation = 7.12 approx.
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b. The mean is decreased by 3. The variance and the standard

deviation remain the same.

5. Mean = (1 + 6 + Q1/3 = 15/3 = 5.

Variance = '

_h 1)2 t_i22_ 16 + 1 + 9 26
8.66

The variance of the new measures will be 8.66.

To show that the variance of a set of measurements is not

changed if a constant is added to each measurement.

Given: Set x
i
of measurements

Let yi = xi + k

Now s2
x

=
i

- 3-02 (1)

and s; = E(yi . (2)

We already know that if

y
i
= x

i
+ k

Then

Er = x + k

Let us substitute these values in (2)

s2
Y

=*l"-Dx
i

+ k - (Cc + k))2

= x)2
= sx
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7. The mean of the numbers -1, -3, 1 is -1.

The mean of the original set is 9000 - 1 = 8999.

The deviations from the mean are 0, -2, +2.

The squares of the deviations are 0, 4, 4.

The sum of these is 8.

The variance = 8/3 = 2.66.

The variance of the original set of measurements is 2.66.

8. To show that if each of a set of observations is

multiplied by k (a) The variance is multiplied by K2,

(b) the standard deviation is multiplied by k.

Given: The measurements xi and yi kxi.

To show: s2x = sXka

Eoci - 500

sy2 = -

We already know that if yi = kxi then -g = ki

Substituting, s; = ADkxi - kir

(xi
--A0

- xi

kg, ,2-11 (xi - 7)2 k2 s4 .

2i
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8.10 Sim lified Com utation of the Variance and the Standard

ev a on , me es ma e or 0 an ays

After having completed the previous set of exercises,

the students should be eager to learn some short-cut devices

for calculating the variance and standard deviation. The

teacher should do carefully, in class, the derivation given

in this section. It might be desirable to begin this material

before the students have read it, and to try to get them to

supply the main line of the argument. Start with the definition

of the standard deviation and ask the students to expand it.

There is a natural procedure to follow in proofs of this type,

and hopefully the better students will have begun to pick it

Up .

It might also be desirable to work out (in class, as an

illustration) one of the previous homework exercises using the

shortcut.

8.11 Exercises

Students should be expected to do at least 2 of these

problems. The solution to Problem 1 is given in the text.

Solutions to Problems 2 and 3 will vary; however, at least

one solution should be gone over in class.
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8.12 The Chebyshev Inequality

In any but an exceptional class, it would probably be

best to regard this section as enrichment material for the

best students. The proof of the Chebyshev Inequality involves

some manipulations and statements that are quite sophisticated

for this level. The teacher should expect that even very good

students will need some help with this material. Students

might be advised to focus first on the interpretation of the

theorem given in this section, rather than on the proof.

Later in his study of statistics, the student will see that

this theorem can be improved upon for certain assumed

distributions; for example, if the data is assumed to follow 6

normal frequency distribution, approximately two-thirds of the

data will lie within one standard deviation of the mean, and

about 95% will lie within two standard deviations of the mean.
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Note that the Chebyshev Inequality, in contrast, states only

that not all of the data will be farther than one standard

deviation from the mean; further that at least 3/4 of the data

will lie within two standard deviations.

8.14 Review Exercises

1. a. 7

2

49

b. 25 mo,A

20 Ira

15 Go/A

10 9104%

5 =A

50 51 52 53 54 55 56 57

49 50 51 52 53 54 55 56 57

c. Median = 54. Lower quartile = 52. Upper quartile = 56.

d. The mode is 56.

e. The range is 57 - 49 = 8

The interquartile range is 56 - 52 = 4

f, g, h.

x
i

f
i

yi ---. xi - 53 x
i
f
i

f
i
y
i

f x2 fii i
ya
i

49 1 -4 49 -4 2401 16
50 2 -3 100 -6 5000 18
51 1 -2 51 -2 2601 4
52 3 -1 156 -3 8112 3

53 2 0 106 0 5618 0
54 4 1 215 4 11664 4

55 3 2 165 6 9075 12
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56 7 3 392 21 21952 63

57 2 4 114 8 6498 32

25. 1349 24 72921 152

- Yx1 i.f 1349
4 ---275 53.96

24
R = g 4. 53 y- y5- = .96

Si = .96 + 53 = 53.96

Iixi
a

SX 77-. X
-3 i

21
.

729 291'.,6816

2916.84 - 2911.6816

= 5.1584

s2
x y

s2 = - (.96) = 5.1584

s
x

= s
y

= .15.15b4 = 2,27

a. The range is 4300

b. Interval
Boundaries

Midpoints

Xi

Frequency
Li

Cum. Freq.

23,000 - 24,o00 23,500 1 1

24,000 - 25,0o0 24,500 1 2

25,000 - 26,000 25,500 3 5

26,000 - 74,000 26,500 2
ic

27,000 - 253,000 27,500 1

28,000 - 29,000 28,500 3 11

29,000 - 30,000 29,500 3 14

30,000 - 31,000 30,500 2 16

- 32,000 31,500 1 17

32,000 - 33,000 32,500 2 e.
19

33,000 - 34,000 33,500 3 22

34,000 - 35,000 34,500 4 26

35,000 - 36,000 35,500 1 27

6,000 - 37,000 36,500 1 28

37,000 - 38,000 37,500 2 30
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Interval
Boundaries

Midpoints
x
i

Frequency
f
i

22,000 - 24,000 23,00o 1
24,000 - 26,000 25,000 4
26,000 - 28,000 27,000 3
28,000 - 30,000 29,000 6
30,000 - 32,000 31,000 3
32,000 - 34,000 33,000 5
34,000 - 36,000 35,000 5
36,000 - 38,000 37,000 3

Cum Freq.

1

R
14
17
22
27
30

c. In the first grouping the mode is 34,500. In the

second grouping the mode is 29,000.

d. With the first grouping:

4

2

It% t
With the

6

5

3

2

aimlIm11

second grouping:

615
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e. Cumulative frequency polygon with first grouping:

30 U096

25

20

15 501,

10

5

Cumulative frequency polygon with second grouping:
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f. With the first grouping:

Calculated median = 30,500

With the second grouping:

Calculated median = 31,000

g. One convenicnt transformation to use for the first method

1of grouping is
Yi D5Oxi - 29.5.

We obtain the table:

x
i

f
i Yi

f
i
y
i

f ..2

iJi

23,500 1 -6 -6 36
24,500 1

.....

-5 2
5, 500

3 -12
26,5oo 2 -3 -6 18
27,500 1 -2 -2 4
28,500 3 -1 -3 3
29, 500 3 0 0 0
30,500 2 1 2 2
.31,500 1 2 2 4
32,500 2 3 6 18
33,500 3 4 12 45
34,500 4 5 20 100
35,500 .1 6 6 36
365 o 1 7 9
37,, 5o00 2 16 1428

Then

30

for. . 1.233

l000g + 29,500

= 1233 29,500

= 30,733

s; = 5 - (1.233)2

= 15.7789

sy= /15.770

= 3.97

227

37 519
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s2 = (1000)2 s2

= 15,778,900

s
X = l000 s

=3970

In the second method of grouping we might make the

transformation

Xi f

1 31
2
fiyi f y2

Yi 2600xi

Yi

23,000 1 -4 -4 16

25,00o 4 -3 -12 36

27,000 3 -2 -6 12

29,00o 6 -6 6

31,00o 3 0 0 0

33,000 5 1 5 5

35, 000 5 2 10 20

37,000 3 9 27

30 122

Then

y = = -.133

2000g + 31,000

. -266 + 31,000

= 30,734

1
=

22
- (-.133)2

4.0666 - .0177

= 4.0489

= 2.01 288
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s2 = (2000)2(s2)

= (4,000000(4.0489)

= 16,195,600

= (2000)(sy)

= 4020

289



- 285

Chapter 9

Transformations In The Plane: Isometries

Time Estimate For Chapter: 25 - 28 days

This Chapter continues our study of geometry. The background

for this continuation is considerable. Students have had

experiences with proofs and some appreciation of the nature of

en axiomatic system. Of great importance to our purposes in

this Chapter are coordinates, for they will make possible a

simple presentation and a facile method or proof. However, a

continued reliance on coordinates leave some students with the

impression that the use of coordinates is mechanical, and this

is unfortunate. This Chapter should help to remove this'unhappy

impression.

When Euclid proved his triangle congruence principles he

moved triangles about to make one coincide with another. He

must have been uneasy about those motions for he does not use

this technique as a regular practice. Besides, he must have

known he was moving something that was not physical. Yet in

these motions lie the beginnings of the subject matter of this

Chapter, which studies the nature and properties of "rigid

motions", the mathematical counterparts of physical motions.

We recognize four such "motions", reflections in a line

(symmetry in a line) translation, rotations about a point (in-

cluding a half-turn about a point or symmetry in a point) and

glide refleetions. It is essential to regard these as special

cases of transformations, that is, mathematical one-to-one

2'99
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mappings of the entire place onto itself.

The set of rigid motions constitute a group under the

operation of composition. They differ from other groups of

transformations In their preservation of distance. We call the

set of rigid motions the set of isometries.

A word of caution concerning rigor. While we want students

to understand what rigor means, we can't expect them to conduct

themselves as though they were professional mathematicians who

are publishing for other professional mathematicians. Chapter 4

and the first parts of Chapter 6 are occupied with teaching the

concept of rigorous procedures. In this Chapter we relax

standards of rigor. Occasionally we rely on pictures; sometimes

we omit consideration of special cases in the interest of

avoiding the practice of "nit-picking" which can be so deadly

to the interest of most students.

Another word of caution. There are a great variety of

transformations. Our main concern is with plane isometries.. But

it would be unfortunate to leave the impression that isometries

are the only kind of transformation. We try to dispel this

impression in Section 9.19, where we present some elementary

notions about dilations (homotheties) and similarities. Other

types of transformations not mentioned in this Chapter are per-

spective affinites, affine transformations, prejective trans-

formations and topological transformation. These are studied

in advanced grades.

And a final word of caution. After students have studied

2°1_
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isometries they will have two main methods of proof: using

coordinates or using isometries. They should be encouraged to

develop skill in the use of both methods. It is unfortunate

that success in the use of one of those methods tends to

discourage use of the other.

A word about the general structure of this Chapter. After

explaining what plane transformations are (Section 9.1) the

special cases of isometries are introduced (Sections 9.3, 9.5,

9.7, 9.9). These presentations are guided by two objectives.

(1) To show that all isometries are compositions of line

reflections (three at the most). (2) The set of isometries,

under the operation of composition, is a group. This overall

view may help to explain some of the exercises in the early

exercise section. For instance it is not too early to look at

the group features at the outset long before the word "group"

is used. The student is reminded early that composition of

mappings is associative, from which it follows that the compo-

sition of transformations is associative. The identity trans-

formation must also be recognized quite early. This too helps

to prepare the student for an understanding of groups of

transformations and subgroups.
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9.1 What is a transformation? (1 - 2 days)

It is advisable to review the meaning of mapping and

operational system.

Since composition of maps F and G is possible when the

range of F is equal to the domain of G, and the domain and

range of all our transformations are the set of points of a

plane, it is simple matter to compose two transformations in

a plane. It is a short step to conclude that composition of

plane transformations is associative, for we have already

concluded that composition of mappings is associative.

In studying some of the transformations students should

be encouraged to look for properties that are preserved.

These searches can be based on drawings. Of course the basic

property that interests us is the one that preserves distance;

that is, the distance between any two points is equal to the

distance between their image points. An interesting trans-

formation is found in Exercise 8 of Section 9.2. Under this

transformation the distance between an infinite number of pairs

of points is preserved, but for another infinite number it is

not. Among other properties students should look for are

preservation of collinearity, betweeness relation for points,

parallelism between two lines, and measure of angles. It would

OfAfl
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nmsaart.

be instructive to look for properties that do not belong to

transformations.

Exercise 4 contains many exercises of mappings in terms of

coordinate rules. Students should do most of them, if not all,

for coordinate rules are going to be an important mathematical

asset in this Chapter. Also they are interesting.

9.2 Exercise Solutions

1.

This mapping is a transformation because it's a. mapping

of the plane onto itself and is one-to-one. To locate

the origin of D', take D such that D', 0, D are collinear

and OD = OD'.

2. The figure above can be used if each letter and its "prime"

are interchanged. To find the original of D' take D such

that D', 0, D are collinear and OD = 2 ODI.

3. A(-2,

B(0,

C(3,

D(1,

(1,

(3,

(6,

(4,

-3)

2)

0)

-5)

2) )C'

This procedure is a mapping because a unique image is

assigned to each point. It is a transformation because

the mapping is onto the plane and is one-to-one. To find

Pm
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the original of an image use (x, y+2).

a b c d e f

A' (-2,1) (2,-1) (2,1) (4,-1) (-4,1) (-8,-1)

B' (0,-4) (0,4) (0,-4) (0,4) (0,-4) (0,4)

C' (3,-2) (-3,2) (-3,-2) (9,2) (-9,-2) (27,2)

D' (1,3) (-1,-3) (-1,3) (1,-3) (-1,3) (1,-3)

g h i j k 1

A' (-8,o) (4,1) (-30-4) (-1,-2) (-3,-1) (-3,-4)

B' (0,5) (0,16) (1,1) (4,0) (4,-4) (-4,8)

C' (27,3) (9,4) (7,-1) (2,3) (5,1) (4,7)

D' (1,-2) I (1,9) (3,-6) (-3,1) (-2,4) (5,-5)

a) Transformation

b) Transformation

c) Transformation

d) Mapping but not

one-to-one

e) Mapping but not

one-to-one

f) Transformation

g) Transformation

h) Mapping but not

not onto

i) Transformation

-b)

P' (a, b) -a, b)

P'(a, b) ----iiP( -a, -b)

a transformation - neither onto nor

a transformation - neither onto nor

P' (a, b)

P'(a, b-1)

a transformation - one-to-one but

P' (a, b+3)
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J) Transformation

k) Transformation

1) Transformation

Al

Ox

A A
This is both a mapping and a transformation. It is

P' (a, b)-----P(b, a)

Pt(e, a;D)

2a-b 2b -a
P'(a, ( 5--)

worth noting that for each point P, PP' = 20102.

A A'
It is both a mapping and a transformation. To find the

original of P' take PI such that 02 is the midpoint of

P'Pi, then find P (the original of PI such that PI, 0,

and P' 'are collinear and 01P = i01131.

A _§.24A2

Af-->A1-----)A3

Since this is true for all A we may conclude that the

composition of transformations in a plane is associative.

(This result will he used later in the chapter in connection

with a study e groups of transformations).

8. Yes. Assignments ere unique; the mapping is one-to-one and

onto. Therefore it is a transformation. (Note. This

transformation has none of the interesting properties

belonging to isometries and similarities).

09P
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9.3 aLIALCALWAIDILilt ( 1 - 2 days)

Students have already had a look at these transformations

in Course 1. But it would not be a waste of time to introduce

them again through paper folding activities, noting its

characteristics and what it preserves. But this should be done

quickly and lead to mathematical considerations.

We spend much time to establish the distance preserving

property of reflections, for this stamps them as isometries.

But more than this, this property leads to the establishment of

a list of other properties. This list is developed out of

students experiences with the exercises in Section 9.4. Being

exercises should not diminish their importance, and for this

reason a summary of these properties appears at the end of that

section. Your students may want to refer to that summary more

than once. Most important is the fact that these properties

may be "inherited" by all other isometries, for it will be shown

that other isometries can be regarded as a composition of line

reflections. Thus any property that survives in such a composition

belongs to the composition.

Reflections in lines which are not parallel to an axis

will be studied in Course III. Reflections in line y = x or

y = -x may be tried in Course II if desired.

9.4

1.

Exercise Solutions:

(a) (3, -5)

(d) (NT, 5)

(g) (0, 0)

(b)

(e)

(h)

(-3,

(3,

(a,

-5)

0)

-b)

(c)

(f)

(-3,

(0,

5)

3)
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2. (a) (-3, 5) (b) (3, 5) (c) (3, -5)

(d) (47, -5) (e) (-3, 0) (f) (0, -3)

(g) (0, 0) (h) (-a, b)

3. (a) 2 = (3 +x2) x2 = 1 A' (1, -2)

(b) 2 = (-2 + = 6 B' (6, 5)

(c) 2 = (Nln- + x2) -)x2 = 4 -N/7:. C' (4 - N/2", 3)

(d) 2 = (a + x2) x2 = 4 - a:. DI (4 -a, b)

4. (a) -3 = (3 + x2 )----4.xt = -9 A' (-9, -2)

-3 = (-2 + x2 )-----÷x2 = -4 .. B' (-4, 5)

(b) 1 = (-2 + y2) = 4 A' (3, 4)

1 = (5 + = -3 B' -2, )

(c) -2 = (-2 + ye )--5V2 = -2 :. Al (3, -2)

-2 = (5 + = -9 B' (-2, -9)

5. (a) A (4, 2) Ry A'. (-4, 2), B (-1, 5) )B' (1, 5)

AB =4(4+1)3 + (2-5)2 =

A'B' = 4(-4 - 1)3 + (2-5)2 1/7

(b) A(0, 5) RY '0(0, 5), B(4, -1) RY B,(-4, -1)

AB =NI (0 -4 )'r + T5+1)3 =Nig

A'B' r0+4)1 + (5+1)e =457
(c) A(-2, 0) --BY--÷A' (2, 0), B(0,-5)-2Y---)013' (0,-5)

AB =4 (-2-0)3 + (0+5)2 = V27
A'B' = (2-0)' + (0+ 5)4 =

6. AB + BC = AC because B is between A and C.

AB = A'B', BC = B'C', AC = A'C' because RI is an isometry.

A'B' + B'C' = A'C' because of the substitution property of
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(a) If B' is not in tlCTI then A', B' C' are vertices of

a triangle and by the triangle inequality theorem

(See Course 1 Chapter 10) A'B' + B'C' > A'C'.

(b) If A' is between B',C' then B'A' + A'C' = B'C', or

A'C' = B'C' - B'A'. But A'C' = A'B' + B'C'. A'B' = 0

or A' and B' are not distinct points. This implies

that A and B are the same point - a cJntradiction.

Similarly, C' cannot be between A' and B' (we have

not considered the case A' = B' or C' = B', for this

leads easily to A = B or C = B).

7. By Exercise 6 the betweeness relation for points is preserved

under a line reflection. It follows immediately that

collinearity is preserved since the betweeness relation

implies collinearity.

8. The reflection of the endpoint of a ray is a point. For

any three points of the ray, of which one is the endpoint,

their images under a line reflection have the same betweeness

relation as their originals. Therefore the images of

all interior points of the ray are collinear and on the

same side of the image of the endpoint. Therefore the

image of a ray is a ray.

A similar argument can be made, applying to both

endpoints of a segment. Hence the image of a segment

under a line reflection is a segment.

9. (a) By Exercise 8 the images of the sides of LAOB ere

rays having the same endpoint, EV and 0 'B' . Let C



-295-

be any point between A and B. We may assert that Teis

a ray of LAOB. The image C' of C is between A' and B'.

Therefore 67* is a ray between 00'A and Ole. Hence

the image of LAOB is LA'O'B'.

(b) y -axis

x -axis

10. If L is the x -axis, Al may have the equation y = k, As

the image of Al, under Rx, is y = -k. Therefore Al II Ag.

11. Let A be the x-axis of a rectangular coordinate system.

Then Al may have equation of form x = k. Since (x, y)

Rx
(x, -y). The image of x = k is x = k. Therefore

A = Am.

12. Using a rectangular coordinate system with as x-axis

we may assign (a, b) to P. Then P' has coordinates

(a, -b). The image of P' under Rx is (a, -(-b)) or (a, b).

Therefore P = P.

9.5 Translations (2 - 3 days)

The first step in presenting (reviewing) this transformation

can be taken with the aid of an overhead projector. Let the

base be a coordinate plane, and prepare a transparency which

3l)0



- 296 -

is also coordinated by the same set of lines as the base.

(The axis numerals should appear only on the base). Start

the demonstration with the transparency coinciding with the

base, mark a set of points on the transparency (include the

origin), mark their coordinates, move (glide)'the transparency

(with no rotation components) to a new position in which

(0, 0) appears over, say (2, 3). Then list the original and

image coordinates, point for point, until the rule (x, y)

(x + 2, y + 3) become clear.

An important theorem shows that a translation is the

composition of two line reflections in parallel axes. The

order of the line reflection is important. A reversal of

order results in a different translation, in fact, the inverse

translation. Another amazing feature is that any pair of axes

can be used, if they satisfy the direction and distance

requirements, to produce the same translation.

Thus a given translation can be regarded as the composition

of an infinite number of pairs of line reflections, in parallel

axes. You may have to clarify what is meant by the distance

between two parallel lines.

The section ends in a mass inheritance from the list of

properties of line reflections. This inheritance procedure

will be repeated in discussing rotations and glide reflections.
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9.6 )Larsjata

All problems are necessary for clear understanding

and will be used as reference in later development.

Prior to assignment, there should be discussion of

mathematical usage of the letters "x", "y", and "z"

-- used as variables -- and the letters "a", "b", and

"c" denoting specific numbers. In exercises 2(d), (e)

and (f), you can really bring the usage to light through

discussion of errors which will definitely crop up.

9.6 Exercise Solutions

1. (a) (4, 3) (b) (-2, 3) (c) (-2, -1)

(d) (9+, 4k) (e) (1 +47, 2) (f) (0, 1 + 45)

(g) (1, 1) (h) (0, 2)

2. (a) (x, y) Xx-1, y+1) (b) (x, y) >(x-3, Y-15)

(c) (x, Y) >(x+3, Y-5) (d) (x, y) >(x-5, Y-ii)

(e) (x, y) >(x-a, y-b ) (f) y) >(x+a, y+2b)

3. A(0, 2) >A'(-1, 4), B(5, 1) >13f(4, 3).

(a) A translation is an isometry and preserves distance

(4/ 1+ 4-1779 .

(b) Under an isometry the image of a segment is a

segment.

4.-e -1 1-4
(c) Slope of AB =

1 1
. Slope oftiTit = - .

9(19
1.;!
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Slope of ;i24: 2, slope of tr)= 15;.-7-11 = -2.

IV I I IS-Ft

AA, .V1-137--24; BB' .Nn-7111-2 AA' = BB'.

Since the sides in each pair lie in parallel lines,

ABB,A, is, by definition a parallelogram.

The diagonals of a parallelogram bisect each other.

Alternately, the midpoint of A$' has coordinates

(2, -.2- ). The midpoint of A'B also has coordinates
2

(2, For the general proof we may start with

AA' = BB' and AA' II BB'. These conditions reflect

the nature of a translation. If we assume that

ABB'A' is a parallelogram if a pair of opposite

sides have the same length and lie in parallel

lines the proof is complete. Otherwise we may use

a coordinate proof starting with A(xl, y1),

B(xl, yla) and e translation with rule (x, y)

(x+a, y+b). Then A' has coordinates (x1 + a, yi +

and B' has coordinates (x2 ++ a, y2 + b).

To prove fE>I( 17-0' and litlfr II t51)use slopes.

Slope of 1-1:3= X1--Z-Lt and slope oft1P Y1 Y2
xi - - ye

This suggests a consideration of two cases: (i)

xi = x2, in which case V and VB7) are parallel

to the y-axis and hence to each other and (ii)

xi X x2, in which case AB and 'B' have equal

slopes and are parallel. To prove 111' II liT7we
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work with slopes
a
-

a'
and - a = 0, implies AA4-4,

and BB' are parallel to the x-axis, etc.

4. (x, y+1).

5.

This

TS o T1
>(x+4, y+1,

shows that TS o Tl is a translation.

A(3, 2) T2 (7, 3)->

B(-4, 0) To °
Ti

>(00 1)

c(-2, -5) T6 ° Ti -4)

(2, 3

>(2,

3)>(5, >(2,

Thus (2, 3) T6 ° Ti >(2, 3)

This suggests that T6 0 Ti = i.

(-2, 8) ---11---*(1, 6)-----4( -2, 8).

(a, b -2) ---T-4-->(a, b).

(x, Y) ==k-> (x-3, y+2) -21-> (x, Y).

Therefore T1 0 TS = i.

6. (a.) T(a+c, b+d) (b) T( -a, -b) (c) T(0, 0).

7. Using the notation of Exercise 6,

T(a, b) 0 T(c, d) = T(c+a, b+d)

T(c, d) 0 T(a, b) = T(a+c, d+b)

Since a+c = c+a, and b+d = d+b for all real numbers

T(a, b) 0 T(c, d) = T(c, d) 0 T(a, b).

(2, 0) 11/

and (2, 0)

(3, -4) Rt

and (3, -4)

>(-2, 0)11>(10, 0).
T(8, 0) >(10, 0).

>( -3, -4)31>(11, -4
T(8, 0)

>(11, -4).
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(c) (10, 3) RI >(-10, -3)----1112-->(18, -3

and (10, -3) T(8. 0)
>(18, _3).

9. Let RmRA = F. Then (RmRe)(Rem) = F(Rem).

Using the associative property we may write

Rm(Ret) Rm = F(RARm).

But RtRA = i since line reflections are involutions

and Rmi = Rm. So

RmRm F(RtRm)

i = F(RDRm).

Therefore F is the inverse of Rem. Since the latter is

not i, in general, then F X Rem.

Proofs by coordinates are also available, The

general result may also be stated as follows: If ROL =

T(a, b) then Rem = T(-a, -b). This tells that the

distances of the translations are the same, but they

have opposite directions.

10. Compositionsof transformations are associative. Since

translations and line reflections are transformations,

compositions of translation is associative end also

composition of line reflections.

11. Exercise 6 answered this in terms of the notation T(a, b).

In terms of coordinate rules we may say, if T1 has rule

(x, Y) >(x+a, y+b) and T2 has rule

(x,
T8

y+d), then
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y) o Ti (x+a+c, y+b+d)

(x, (x+c+a, y+d+b)

12. The composition of two line reflections has been shown to

be a translation if their axes are parallel. Since a

translation is not a line reflection the answer to the

question is no.

13. (a)

(b )

The set of all translations in a plane and the

operation of composition is a group because:

(i) The composition of two translations is a

translation (See Exercise 11).

(ii) Compositions of translations (transformations)

is associative. (See Exercise 10).

(iii) i = T(0, 0) (notation of Exercise 6). Then

T(0, 0)011(a, b) = T(a, b),6 T(0, 0) = T(a, b).

(iv) T(-a, -b) is the inverse of T(a, b).

The set of line reflections with composition as

operation is not a group since it is not an operation-

al system. (See 717xercise 12).

14. Re; = T(0, 0). (See Exercise 12 Section 9.4).

9.7 Rotations and Half -morns (4 days)

The first step in presenting (revi wing) rotations can

be taken with the aid of an overhead projector. Using a grommet

fasten a transparency to its base at a point near its center.

Acetate sheets for the overhead projector are available in

rYIP
e ,T)
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many colors at reasonable prices. Since even the writing

with magic markers may be washed off. Larger sheets may be

used over a white background without using the overhead

projector. See problem 16 in Section 9.8.

Mark a set of points (see Figure 9.8) and the lines through

them on the base, and on the transparency so that a point of

the transparency coincides with a point of the base. Then

rotate the transparency, through 30 degrees, say. This activity

should clarify the nature of a rotation, and embark the

student on explorations of rotations. Be careful to define

positive and negative directions for rotations respectively,

counter-clockwise and clockwise. Sooner or later students

will confuse the measure of an angle with the measure of a

rotation. An angle is not the same as a rotation. An angle

is a set of points. A rotation is a transformation. The

measures of angles vary from 0 to 180 (including 0 and 180,

in some books, excluding them in others). The measure of

rotations can be from -360 to +360, for our present purposes,

and the set of all real numbers for other purposes.

The basic theorem in this section asserts that every

rotation can be regarded as the composition of two line re-

flections whose axes intersect. A reversal of order of the

line reflections results in a different rotation, in fact,

the Inverse rotation. Also of interest is the fact that there

are an infinite number of pairs of line reflections that
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produce the same rotation. This leads to the conclusion

that rotations are isometries and inherit properties of line

reflections that survive a composition.

We restrict composition of rotations to rotations about

the same center. The question may arise whether or not the

composition of two rotations about a different center is

also a rotation. A proof that this composition is a rotation

is found on page 56, of Jeger's "Transformation Geometry."

If the centers are 01 and 00, the proof decomposes the first

rotation (about 01) into two line reflections whose second

axis is <01 02, and decomposes the second rotation (about 00)

into two line relections whose first axis is also<010. The

center of the resultant rotation is the intersection of the

remaining axes, and the measure of the resultant rotation

is the sum of the measures of the component rotations.

We have treated half-turns as special cases of rotations

where measures are 180 degrees. This implies that a point

A1, its image A', and the center 01 of the rotation, are

collinear with 0, the midpoint of AA'. For this reason a

half-turn is also known as a symmetry or a reflection in a

point.

The coordinate formula for a half-turn about (a, b) is

important and should be remembered for exercises that follow.

You may have to review the midpoint formula.
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9.8 Exercise Solutions

A1.

Oi

2. Since a rotation is the composition' of two line reflec-

tions it has the properties that are conserved in the

composition of two reflections. Therefore the images

A', B', C' are collinear; B' is between A' and C';

AB = A'B', AC = A'C', BC = B'C'.

r(P, 20) 0 r(P, 30) = r(P, 50)

r(P, 20) r(P, 30)If A > AI -> A', then

mLAPA1 = 20, mLA1PH' = 30, isAs between

PA> and Tr); hence mLAPA, = 50. Also

PA = PAI = PA' or PA = PA'

Therefore A r(P, 50) .> At.

4. (a) r(P, 60)

(c) r(P, 170)

(b) r(Q, 10)

(d) r(Q, 0)

5. Then inverse of r(P, 9) is r(P, -9).
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6. The system (r(P, 0), 0) is an operational system for

r(P, 90) o r(po 91) = r(p, 91+90), is associative for the

reason that it is a transformation: r(P, 0) is the

identity rotation, and the inverse of r(P, e) is r(P, -9)

because their composition in either order is r(P, 0).

7. (a) (-3, 2) (b) (2, -3) (c) (0, 2) (d) (47, 43).

8. Using the rule (x, y) > (2a -x, 2y -b) where

(a, b) is the center of the half-turn. The images of A,

B, Co D are respectively:

(a) (2-3, -4+2) = (-1, -2)

(b) (2+2, -4-3) = (4, -7)

(c) (2-0, -4+2) = (2, -2)

(d) (2 -47, -4 +5).

9. (-2-3, 6+2) . (-5, 8)

(-2+2, 6-3) = (0, 3) (-2 - 47, 6 443 )

(-2-0, 6+2) (-2, 8)

10. Taking the center of the half-turn as the origin of a

rectangular coordinate system

(x, Y)
Ho Ho

> (-x, Y) > (x, Y).

Therefore (x, y) 11° 6 11° > (x, y) and Ho is an

involution.

11. Let P(a, b) and Q(co d) then:
HQ

A(x, y) HP > Al(2a -x, 2b y) > A'(2c-2a+x,
2d-2b+y)

The rule of HQHP is that of a translation with rule

(x, y) > (x+2c-2a, y+2d-2b)

PIO
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The slope from A to A' = . From P to Q the slope

J-°

4. d-a
Therefore AA' 11 PQ and MO and NI> have thecb

same direction. Also AA' =

24V(a-cla + (b -d )1 = 2PQ

12. Using data in Exercise 11

HQHP : (x, y) > (x-+ 2c - 2a, y + 2d - 2b)

on the other hand

HpHQ : (x, y) > (x + 2a - 2c, y + 2b - 2d)

HotHp = HpHQ iff a = c and b = d so,

given P Q then Hep Hp%
HP Ho HnHu

(x, y) r > (x+2a-2c, y+2b 2d)
HQ HP

(x, y)

(HpH(1) and (Help) are inverses.

13. Every line through the center of a half-turn is fixed,

not pointwise. To prove this take the center of the
H,

origin and a line, y = mx. Since (x, -y),

(x, mx)
H°

> (-x, -mx). The coordinates (-x, -mx)

satisfy y = mx. Hence y = mx is fixed under Ho, but not

pointwise.

14. Let 0 be the origin of a rectangular coordinate system

and A with equation y = mx + b, b 1 0, any line not

containing 0. Then (x, mx+b) > (-X, -mx-b).

The coordinates of the image satisfies y = mx -b, an

equation of P. Therefore the slope of A is equal to

that of Al. Hence A li At.

15. ABB,A, is a parallelogram because AEI and ATE having 0
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as midpoint bisect each other. For an alternate proof

one may use coordinates and prove by the slope formula

(assuming all lines have slopes) that opposite sides

lie in parallel lines.

16. a. (I, 0) > (a . 1 + b 0, b 1 - a 0) = (a,b)

b. (a, b) > (la. a + b. b, b a - a b) =

(a° + b2 0) , (1, 0).

bc
c. Any point P on 2 has coordinates (C, iTT

Then (C , 1-ar )
be c abc %Xac + wr , be a.---Tir. ). ac 4. rci -

a2c + ac + boo c(a2+b2) + ac c+ac
c.a + 1 a + 1 a+1

abc abc + be - abc be
be - -6-(4.7

a + 1 Fa,

Therefore, P is a fixed point and A is a fixed line.
R2

d. (x, y) > (ax + by, bx - ay).

Applying the transformation again,

(ax + by, bx - ay) > (a (ax+by) +b (bx-ay ), b (ax+by)

-a(bx-ay)) = (x, y).

17. If A(x, y) is a fixed point then x = ax -by and y = bx+ay.

This system of equations has a unique solution (x, y) =

(0, 0) if a 1 I. If a = 1 then b = 0 and the rule

degenerates to (x, y) y), the rule for the

identity transformation, which may be considered a rota-

tion through 0° . Hence this mapping, if it is not the

identity, has only one fixed point, namely 0 (0, 0).

b. Let A have coordinates (c, d). Then At has coordinates

(ac-bd, bc+ad).

91
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Calculating distances OA and OA',

OA =^lc° +dam

O'A' a2c4+b d +b cd+a

(ad+b )(c +d )

Therefore OA = OA'.

c. (1, 0) (a1-b0, bl+a0) (a, b)>

(0, 1) (e0-b.1, b0 +a1) (-b, a)>

(a, (aa-b(-b), ba+a(-b)) (1, 0)-b) >

18. Let A(e, b) and B(c, 0) be two points of A.

Then m = ac
RxA(a, b) Rx > A'(a, b), B(c, 0) > B'(c, 0).

Slope of A'151 -b
m.8-C

A similar proof shows that the slope of L2 = -m.

19. Activity

20. From Exercise 16, y = x is of the form y = x

where a = 0 and b = 1.

The rule for R
A

is (x, y) >(ax+by, bx-ay) which

now becomes (x, y) > (Y, x).

9.9 Composing Isometrita, Glide Reflections_ (2-3 days)

This section gives special attention to composition of

isometries, arising out of our interest in regarding transla-

tions and rotations es compositions of line reflections. It

leads naturally to the glide reflection, another type of

isometry, and raises the question whether.or not there are

211
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more. This question is answered in Section 9.11, where any

isometry is shown to be the composition of no more than three

line reflections. This section does more. It continues to

prepare the student for an appreciation of the group structure

of the set of isometries under composition.

It is interesting to note in passing that a translation

is the composition of two half-turns about distinct centers.

This fact permits us to regard a glide reflection as the

composition of a line rE:lection and two half-turns, or a

line reflection and four suitably chosen rotations.

9.10 Exercise Solutions

1. Let A be the axis of the line reflection and also the

x-axis of a rectangular coordinate system. Let T be

the translation with rule (x, y) > (x+a,-y).

This T is in the direction of 2.

(x, y) T -> (x+a, (x+a, -y), and

(x, y)
Rt

(x, -y) T > (x+a, -y)

Therefore R
A
0 T = T 0 R

A'

2. Since the composition of two line reflections in parallel

axes is a translations the composition of three line

reflections described is equal to the composition of

a translation and a line reflection whose axis is parallel

to the direction of the translation. By Exercise 1 this

is a glide reflection. Also by Exercise 1, the answer

to the last question is yes.

P11

ma.
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* 3. Let F = T 0 R shere T is the

translation component of F.

Let P
RA

> Pi T > P'.

Then A bisects PP1 and is

parallel to PIP'. Therefore

A bisects PP'.. (The line that

bisects the side of a triangle

and is parallel to a second side bisects the third side).

(See Section 6.17 Chapter 6 problem 2).

4. Using the data in the solution to Exercise 3, let .$15:

fr--.
intersect in A and let PP, intersect L in B.

Then T = HB 0 HA.

Thus F HB 0 HA 0 112.

5. Let the glide reflection be F = T 0 RA

Then F 0 F (T 0 RA) 0 (T 0 RA) = (T 0 RA) 0 (RA 0 T)

(See Exercise 1)

= T o (Rio RA) 0 T (The associative property of

composition of mappings.

.T0i0 T (line reflections are involutions)

= T o T (T 0 i = T)

= T' (The composition of two translations

is a translation)

T' has the same direction as T, but twice the dis-

tance.
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6. A B Al B1 is a parallelogram because its diagonals

bisect each other. In general AlApB2B1 is a parallel-

ogram (it is not a parallelogram if A2 is collinear

with Bl, A% but AlB1 = 4E12 because translations are

isometries) because AlBl = A2B2and AlB1 end A;IT lie

in parallel lines. It follows that AB = B2A2 and

4-+ . 41*
AB II BpA2. Hence ABA2B2 is a parallelogram. There-

fore the isometry that maps A onto A2 and B onto B2

is a half-turn, because the diagonals TT, end BB2

bisec; each other. (It is assumed that A2 is not

collinear with A, B.) An occupation with the collinear

cases requires the following: If 0 is on Vit still

holds since a half-turn is an isometry and AB = AlBi

and AlA2B9B1 is a parallelogram by the arguement above.

7. Let T be the translation and H0 the half-turn. Let A

and B be two points. Let A T AI, B >B1 .
Then ABB1A is a parallelogram and 1 1 1IC37 and AB=Api. Let()

be non-collinear with Al and B, then A, A2

and B
H
°1 > B2. Again AlBiA2B2 is a parallelogram,

and 174 174, Al l = A0B2. Therefore AB

and AB = B2A2. Therefore ABA,B2 is a parallelogram and

its diagonals bisect each other. Tills, under the half-

turn in midpoint of AA2 (or BB2 ) A > Ap and

B > Be. Thus H0
0 T is a half-turn. If 0 is

collinear with A, and B1 we need the statement cited

in the last sentence of the solution of Exercise 6.
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8. We need to consider only x-coordinates of P and the

sequences of images. If x1 is the coordinate of P then

the coordinate of Pl, its reflection in the y -axis, is

-x since OP = OPi. If P2 is the reflection of P1 in

line e (with equation x =a) then its coordinate is x'

1,such that a = fp° -xi). Solving gives x' = 2b 2e +xl.

The reflection of Po, in b (the line with equation x=b)

is P3. Its coordinate x" is such that b x")

or 2b = 2a + xi -x". Solving gives x" = 2a - 2b + xl.

Consider the distance PP3. PP3 = 12a - 2b + xl - xil

21b-al or 22:PP3 = lb-al. There is a fixed line where

the equation is x= a - b + xi, and P's distance to this

line is lb al, while P3's distance to it is also lb-al.

Thus this line is the perpendicular bisector of PP3.

We conclude that composition of the three line reflections

is a line reflection.

9. Take e to be the y-axis and b the x -axis of a rectangular

coordinate system and then c has equation x..a.
tea

P eltqOc3)

Rc 0 Rb 0 Re

x' -c =c +x

P3 x' = 2c + x

P3 is the image of a. point P4 under Rb.

X 3:b

ea(9c- 53 (x, y)
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This point must be P4 (2c + x, y)

P4 is the image of a translation whose direction is

to x-axis and distance = 2c.

10. (a) We must show that the slope of A is the same as

the slope of the line of direction. The slope of A is

irr and the direction line's equation has a slope

be b
of (a+f)c c*

(b) We can represent any point of A as having coordinates

((a+l)d,bd) where d can take on all values, since these

coordinates satisfy the equation of Z. If we apply the

coordinate rule on these coordinates

(x, y) ->(ax+by+(a+l)c, bx-ay+bc).

Considering first the effect on (a+l)d, then on bd we

get (a+1)d------a(a+1)d+b(bd)+(a+1)c = a2d+ad+b2d+ac+c

= d(as+b2)+ad+ac+c = d+ad+ac+c

bd >b(a+l)d-a bd+bc = bd+bc.

If the "image" values satisfy the equation of the line

A the proof is complete. Use the equivalent equation

(a+1)y = bx. Then (a+1)(bd+bc) should be equal to

b(d+ad+ac+c), and they are.

The rule should assign a point of A to a point of A

because under a reflection in a line the line itself

is fixed and only the translation "moves" that point.

(c) (x, y) T >(x+(a+l)c, y+bc)
R,
"(x, y) >(ax+by, bx-by) See section 9.8 problem 16.

(x, T o
RL>(ax+by+(a+l)c, bx-by+bc)
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11. If X is the midpoint of PPs then XC 11 PP2 11 AB and

XA II PsP1 BC because if a line joins the midpoint

of 2 sides of a triangle it is II to the third side.

Thus ABCX is a parallelogram. But there is only one

point that can serve as X. Therefore for ell P there

is one point that is the midpoint of PPs.

This shows that the composition of HA, H5, HC which

maps P onto P3 is the same as the HD which also maps

P onto P3. Hence the composition of three half-turns

is a half-turn.

This conclusion is not invalidated if A, B and C

are collinear.

12. This is proved if we can show

that F is the midpoint of

773. This can be done by

showing that PP03111 is

parallelogram for then F is

the midpoint of PPs. A

coordinate proof follows on

te--4)
taking AB as the x-axis of

a rectangular coordinate system with F as origin. Then

A and B may be assigned coordinates (-a, 0) and (e, 0).
HA Hm HD

P(x, Y) > P1 -28 x, -y) >(2a +x, y)
H

Ps(-x, -y) and finally Ps(-x, -y) F > P(x, y).
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9.11 5he Three Line Reflection Theorem, (2-3 days)

We have not shown a figure for the first theorem of

this section. We hope that students will understand it with-

out a figure. This they can do if they see, for instance,

that from A'X' = A'X" we conclude that A' is equidistant from

X' and X". To see a geometric proof by noting the symbols

used to represent geometric entities is a valuable experience

in that it brings home the idea that our system is an abstract

one, and that the figure is a model.

Before teaching the second theorem encourage students

to examine Figure 9.11e, in particular to trace the paths

from A to A'; from B to B1 to B') and from C to Ci to Co to

C'. These are indicated by arrows along dotted lines. As

they trace these paths ask them to tell the distances that

are preserved in their "motion". If they can do this they

may be able to follow the proof without looking at the figure.

9.12. This exercise should be done in class by tracing a card-

board triangle in two positions and finding 3 lines of re-

flection that will map one on the other. Often this can be

achieved in more than one way. Students can repeat this

with two congruent triangles placed on a ditto. Special cases

requiring one or two reflections in a. line may be examined.
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9.13 Directed Isometries (1-2 days)

We have not said much about orientation along a line

or along parallel lines. This concept can be made precise

in terms of parallel rays or anti-parallel rays. The former

are two rays on two parallel lines that are in the same

half-plane of the line containing their vertices, or two

rays on a line whose intersection is a ray. Two enti-parallel

rays are rays in parallel lines that are in opposite half-

planes of the line containing their vertices, or two rays

on a line where intersection is not a ray. Two rays have

the same sense if they are parallel; they have opposite senses

if they are enti-parallel.

The above concepts can be presented informally, if you

wish.

It is easier to present informally the concept of

orientation of a plane. Though the concept is simple, when

presented informally, its application can be quite profound.

Note for instance, the simple proofs that can be given in

Exercises f and 7 of Section 9.14.

9.14 ELILILILSalatiolE.

Note to teecher: All exercises should be done and completed

in order. One builds on another. Exercise 10 should be

starred, or else students should be given hints for the

proof.

1. A line reflection reverses the sense of three noncollinear

f:q1
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points. A second line reflection restores the sense.

A third reverses the sense. Hence the composition of

three line reflections is an opposite isometry.

2. A pair of line reflections is a direct isometry. An

even number of line reflections is a composition of

pairs. The composition of direct isometries is direct

since no reversal of sense takes place for each pair.

An odd number of compositions of line reflections may

be regarded as the composition of an even number of

reflections and one extra reflection (2n+1 = (2n)+1). The

composition of the even number of reflections is direct,

while the last reflection reverses sense. Hence the

composition of odd number of line reflections is an

opposite isometry.

3. A glide-reflection is the composition of a translation

and a reflection in a line. The first preserves sense;

the second reverses it. The composition therefore re-

verses sense and is en opposite isometry.

4. a. A translation preserves sense. The composition

of any number of translations continues to preserve

sense. Hence the composition of any number of

translations is a direct isometry.

b. The same argument applies to rotations as to trans-

lations, since rotations are direct isometries.

The composition of any number of Rotations is a

direct isometry.
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c. The same argument applies to half-turns as to rota-

tions, so the composition of any number of half-

turns is a direct isometry.

5. a. Any permutation of (reverse, reverse, preserve)

results in "preserve." Hence the composition of

the 3, in any order, is a direct isometry.

b. A half-turn preserves sense. To produce an opposite

isometry, the half-turn should be composed with an

opposite isometry. The compositions of an even

number of line reflections is a direct isometry

while the composition of an odd number is an opposite

isometry. Hence we should use an odd number of line

reflections to produce an opposite isometry.

6. Since a half-turn is a direct isometry and the compo-

sition of any number of half-turns continues to be

direct, and since a line reflection is an opposite

isometry, it follows that the composition of any number

of half-turns cannot be a line reflection.

7. The same argument applies to rotations as the one in

Exercise 6 for half-turns. The fact that a rotation

may be the identity transformation does not invalidate

the conclusion.

8. a. Since a glide reflection is an opposite isometry,

we need another opposite isometry with which the

glide reflection should be composed to produce a

direct isometry. This can be a line reflection
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or another glide-reflection.

b. To produce an opposite isometry we need to compose

the glide-reflection with a direct isometry, and

this can he a rotation (including a half-turn),

or a translation.

9. a. The identity mapping preserves sense; hence it is

a direct isometry.

b. If an isometry is direct, its inverse must continue

to preserve senseithat is, its inverse must also

be direct, for the composition to be direct. (The

composition must be direct, since the identity

mapping is direct).

If an isometry is opposite its inverse must reverse

the reversal of sense to restore the sense, so that

the composition is the identity, which is direct.

Hence its inverse must also be opposite.

10. Let the two fixed points be A and B, and let C be a

third point not in V. Let the image of C be C' under

4--*
the isometry. If C and C' are on opposite sides of AB

then the sense in (A, B, C) is reversed in (A', B', C').

This denies the hypothesis that the isometry is direct.

Therefore C and C' are on the

same side of V. Because the

iscletry preserves distance

AC = AC', BC = BC' we can

show that C = C' by taking
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AB as the x-axis of a rectangular coordinate system,

with B as origin. Let A have coordinates (a, 0), C(b, c),

C'(d, e). Then using (AC)2 = (AC' 2 we get (a-b)2+c2

(a-d)2 + e2, and from (BC)2 = (BC')2, b2+c2 = d2+e2.

These imply b2 = d2 and therefore b = d. Hence

C
2 = e2 41c1 lel.

These imply b = d. Since C and C' are on the same side

E-4
of the axis AB we can then show c = e. Hence C = C'.

By the lemma of Section 9.11 an isometry is uniquely

determined by its effect on three noncollinear points.

Since the identity transformation leaves three noncollinear

points fixed, the isometry is the identity.

9.15 Groups of Isometries (2 days)

We have not considered the group of all rotations in a

plane, restricting our ettention to rotations about one point.

We omitted a consideration of the larger group to avoid the

difficulty of showing that the composition of two rotations

rl (Al , el) and r2 (A2 , 02) is r(Q, el + 80, where Q is a

point in the plane. (See Jeger, page 56). If you wish to

develop the larger group, see Problem 3 in the Suggested Test

Items of this chapter.

You will find an example of a finite group of isometrics,

the group that leaves a figure invariant, in Exercise 9 of

Section 9.16.
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9.16 gxercise Solutions

Note to teacher: Problem 9 is important; it will be used

in the following set of exercises. Also, add to Exercise

1, part b, "Using your results in part a, show that the

set of translations (in a plane) is a group.

1. a. (i) T(A, is the identity transformation;

(ii) T(B, is the inverse of T(A, B)' T(B,( C) o T(A, B)

T(A, C)

(iii) T(B, C) ° T(A, s) T(A, C).

b. The answer in a demonstrates that the identity trans-

formation may be regarded as a translation; and every

translation has an inverse that is also a trans-

lation. The associative property has been demon-

strated for all isometrics and therefore belongs

to any subset of the set of isometries. We conclude

that the set of translations (in a plane) is a group.

2. The set of direct isometries consist of all translations

and half-turns. (1) Since the composition of direct

isometries is a direct isometry, the set is closed.

Since the direct isometry is unique, the set of direct

isometries is an operational system. (2' The identity

transformation is a special case of a transformation

or the composition of a half-turn with itself. (3)

We have seen in Exercise 1 that every translation has
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an inverse in the set. If H is a half-turn the HoH = i.

Therefore H is its own inverse. (4) We have established

that the associative property belongs to the set.

Therefore the set of direct isometries is a group.

3. No; th,.! set of opposite isometries is not a group because

the composition of two such isometries is direct and

hence not in the set (the set is not closed). In fact

this shows that the set of opposite isometries is not

an operational system.

4. No; the composition of two half-turns is a translation,

which is not in the set of half-turns. Therefore this

set is not even an operational system. Also, there is

no identity, yet it contains its on inverses.

5. Yes. See Exercise 2 above; and by the definition of a

sub-group.

6. Let P be the point about which the rotations take place

and let a > 0. (a represents the number of degrees of

rotation. It may be any number. It is not to be confused

with the measure of an angle, which is a positive number

less than 180).

(1) Since r(P, b) 0 r(P, a) = r(P, a+b) is a rotation,

we have here an operational system.

(2) Furthermore r(P, 0) = i (identity requirement)

(3) For each r(P, a), r(P, a) 0 (P, -a) = r(P, 0)

(inverse requirement)

(4) The associative property requirement is satisfied
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because composition of mappings. is associative in

general. Hence the set of rotations with the same

center form a sub-group.

7. Since f and g are isometries, each has an inverse, f-1

and g -1 . Since the set of isometries is a group we can

start the proof withfogog-1 of-1 =fo(gog-1)of-1

=foiorl =forl i

operating on the left with (f o g) we get

o g)-10(f o g)0(g- 10 f-1) o
e)-1

o

(C10 C1) o
.1

and finally g-
10 f-1 g)-1

8.
-

(floftof3...ofn1) . fn
-1

o fn -1-1 ...4-1 of1-1.

o
. (a) A---a-->C AB r2 >A T,

r2

C

BC---r2>AB

CA--111>BC

In short, AABC
r2 >ACAB

(b) A---11>A -p-j-B_ RI >ug

Fi
-->C

R. >m-

Fit
C >B Ri >AB

In short, A ABC-21---->AACB

(c) A---5--->C AB-22 >BC

B 112 >B BC R2 >AB

C
R2

>A -CA"

In short, AABC
RR >ACBA
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(d) A 113 > B AB----N > AB

13-

R3
-> A BC R3 > CA

C
R3 >C CA R3 > BC

In short, 6ABC
R3

>I13AC

(e)
0 i. ri

r.p
Ri Ra R3

i i ri. ry RI RP R3

ri ri rs i R2 R3 RI

r, r, i ri. Rs RI lip

Ill RI R3 RP i re ri.

R, R, RI R3 ri i re

R3 R3 R2 RI re rl i

'f) (s, o) is a group because it is an operational

system, is associative; has i as identity element

in S; each row and column has an i entry- hence

each element has an inverse in S.

(g) Subgroups, in addition to (S, 01 are

(1.1.1,r1,r21,0), (11-1,111), 0), ( ,R, Lc)),

(I '11'3 ),0), ((1),0)

9.17 Isometry. Congruence, and Symmetry (4 days)

In this section we use the concept of an isometry to

shed light on the nature of e congruence and a symmetry.

A congruence is a relation between two figures. A symmetry

is a .,Jroperty of a figure. It is a triumph of the concept

of isometry that it is able to define both a congruence and
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a symmetry with simplicity when these concepts are otherwise

quite difficult to define.

You should note that we do not develop any theorems such

as the SAS, ASA and SSS principles for triangles. We are

concerned here only with the definition of a. congruence between

figures, and this definition serves as the working program

to prove any kind of figures congruent.

9.18Ezersaagaalations.

Note to teacher: Exercise 7 is important.

1. Using B es the center of a half-turn,

A > C, B > B, and D > E

Therefore AABD

0

A

> ACBE and AABD = ACBE.

0*
2. Using the reflection in CD,

a. A ----> B, C ----> Cp D > D.

Hence LAM ----> ABCD, and ts,ACD = &BCD.

b. LCAD ----> LCBD. Therefore mLCAD = mL CBD

since isometries preserve angle measures.

c. AC > 3C, AC = BC. Isometries preserve distance.

d. A >B, C ---->C

M ---->M. AACM ----> ABCM and AACM = ABCM.

Since L CAB > LCBA, mLCAB = mtCBA.
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*-4
e. The reflection in CD maps ADBC onto BDAC. Hence

ADBC is symmetric, with line of symmetry CD.

3. No, the proof would be the same since CD will still be

the perpendicular bisector of AB and reflection Intl

will map AACD ----> ABCD and hence AACD = ABCD.

4. Any two circles having radii of same length are congruent.

One way to show this is to use the midpoint of the seg-

ment joining their centers as the center of a half-turn.

This helf-turn maps one circle onto the other. Other

isometries are (a) The translation that maps one center

onto the other, (b) the line reflection in the per-

pendicular bisector of the segment joining the centers

of the circles.

A drawing showing any one of these isometries is

satisfactory.

5. a. Under the line reflection in the perpendicular

bisector of AB, A ----> B, B ----> A and D > C.

Hence AABD ----> &BAC and AABD = ABAC.

173K
1

b. ABCD is symmetric under (1) The line reflections

in the perpendicular bisector of AB, or DC (2)

The perpendicular bisector of UK or BC. (3) The

half-turn in the intersection of AU and BD.

6. The first congruence uses the rotation r1(0, 120). The
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The second use 1.2(0, 240) or r2(0, -120). Assume the

discussion in Section 9.16 Ex. 9 that shows that riand

rp leave the triangle invariant.

Recall that by the rotation r1(0, 120)

A i >B, B rl >C, 0--a--> 0

Hence AAOB ri > ABOC end AAOB = ABOC

Similarly, by r,(0, 240),

A--a> C, B r2 >A, 0 -2:2> 0

Hence AAOB "COA and .% AAOB = ACOA.

7. a. The identity transformation is an isometry. Therefore

any figure is congruent to itself.

b. Let T be the isometry that maps F onto F'. Then

the inverce of I exists and is an isometry. (The set of

isomatries is a group) it maps F' onto F. Hence F'f4F.

c. Let It and 12 be the isometries that map F1 onto

Fp end F, onto F3, respectively. The composttion

It 0 It, maps F1 onto F3. Hence F1 .".4 FS.

Since the congruence relation is reflexive,

symmetric, and transitive it is an equivalence

relation.

8. a. Five: 2 rotations, 3 line reflections (see Exercise

9, Section 9.16).

b. One: line reflection (the lineis the perpendicular

bidvctor of the base).

c. Inf..nite: a rotation of any amount about the center;

e line reflection in any diameter.
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9.19 Other Transformations. Dilations and Similarities.

(3 days)

We use the term "dilation" in the same sense as Jeger

uses "enlargement" and others use "homothety". As we use the

term, a "similarity" is the composition of a dilation and an

isometry. There is an unhappy variation in the literature

in the use of the terms. If students are asked to do any

reading, aside from the text book, they should be apprised

of this variation.

9.20 Exercise Solutions

1. a) b )

c) d)

A'

There are other possible drawings.
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2. The rules of assignment for a dilation about a center

o with scale factor -1, and for a half-turn about the

same center produce exactly the same image for each

point. Hence such a dilation and half-turn are the

3.

same.

A'

0 (o,o)

(c di}

Making such a drawing a measurement of A$ and A'B'

should be sufficient to satisfy the demands of the

Exercise. If a general proof is required we can use

a rectangular coordinate system which has the center

of the dilation as origin, that assigns coordinates

(a, b) tr. A and (c, d) to B. If the scale factor of

the dilation is r- then A' has cookdifat6S (ar, br)

and B' has coordinates (cr, dr). The calculations

for distances AB and A'B' should prove A'B' = r(AB) .

AB =Nr (a-c)" + (b-d)"

A'B' (ar-cr)' + (lor-dr)d

= rNr(a-c)' + (b-d)'

= r AB.
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4. Let the collinear points be A, B, C with B between

A and C. Then AB + BC = AB.

Let r be the scale factor for the dilation and A',

B', C' the images of A, B, C. Then, by Exercise 3 above

A'B' = rAB, B'C' = rBC, A' C' = rAC.

AB+BC = AC implies r(AB) + r(BC) = r(AC) or A,B,+B,C, = A'C'.

Therefore B' is between A' and C'. This proves not

only that A', B1, C' are collinear, but also that the

betweeness relation is preserved by a homothety, that

dilations preserve lines, rays, segments.

5. If dilation h2 of 0 has scale factor r1 and dilation

ha of 0 has scale factor ra then ha 0 h1 is a dilation

of 0 with scale factor r2ra. Thus the system is an

operational system. (Associativity) Composition of

dilations is associative since dilations are tranf form-

ations. (Identity) The dilation of 0 with scale factor

1 assigns each point to itself. Hence it is the identity

transformation. (Inverse) The composition of h1 of 0

with scale factor a with ha of 0 with scale factor

is a dilation of 0 with scale factor 1. Since a / 0

every dilation of 0 has an inverse which is a dilation

of 0.

This completes the proof.



6.

7.

Tr.71.11,7/1

8. A similarity is direct if it preserves the sense of

three noncollinear points. It is opposite if it reserves

the sense of three noncollinear Feints.

9. Since a similarity is the composition of a dilation and

an isometry it is sufficient to know that dilations

preserve angle measures to conclude that similarities

preserve them also. One can prove that dilations

preserve angle measures by first pr ving that the image

of a line under a dilation is parallel to the line.

This leads to the conclusion that the image of an angle

under a homothety has the same measure as that or the

original.

P9c
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9.22 Summary Exercise Solutions (2 days)

1. a)

0

to

C

b) A

6

d) A - - -

C

.
.
.

Nv---- 0' Y
.
. __-. . l8 c.. , 1

A' 1

2. a. Under the half-turn about the midpoint of KU

A ---->C, C ----4A, B ---4D, D ---->B. Therefore

AB ."'>"-D., --->AB and DA ---->M;

or ABCD > CDAB and ABCD = CDAB.

b. No, binause B is not mapped onto A, nor any other

vertex of ABCD.

c. No, unless ABCD is a rectangle.

3. a. Each vertex is amppedoonto an adjacent vertex

because A7., I TO and KU and rir bisect each other.

A --EL --> B

B 13> C

C
r,

D

D --E1> A

In short ABCD--EL4 BCDA, so ABCD = BCDA.

b. ABCD r CDAB so ABCD = CDAB

c. ABCD r DABC so ABCD DABC

f:11")



d. The axis is the perpendicular bisector of AE and MT.

Therefore, under the reflection, A ---> B, B ---> A,

C ---> D, D---->C and ABCD----> BACD so ABCD BADC.

e. Since AU is the perpendicular bisector of TR5

A >A.) B """'"'"""">D, C '>C, D ""°""">B, a. d

Ann >ADCB so ABCD = ADCB.

f. (1) identity = i (2) A reflection in the line

through the midpoints c.e WC and a (R2)

(3) A reflection is Er (R4).

g.
ra r3 RI 112 R3 R4

i i r1 ra r3 R1 112 R3 R4

ri r1 r2 r3 i R3 R4 RI R3

1'3 r2 r3 i r1 R2 RI Rt R3

r3 r3 i r1 ra R3 R4 R2 R1

R1 R1 R3 Ra R4 i 2'2 21 r3

R2 R3 E4 RI R3 r3 i r3 ri

R3 R3 R3 R4 R1 r3 rl I. r3

R4 R4 Rt Ra 112 rl r3 r2 i

h. (i, ri, r2, r3).

I. (i, R1), (i, R2), Om, Rs),

4. Let P be any point not in AB.

Then A
> Ps

H
B

> P2

Thus P > P2

R4 3, O.,
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Now to find the image of P under Ha 0 1%.

H
D

Ha
If P3 > Pa then the statement is proved.

HBHA
, *-4

From P > Pg it follows PP2 = 2AB and PP2 I AB

<4 I
But AB = DC and AB DC. Therefore PPn = 2DC and

11 DC. In APPaPs, therefore DC intersects P3P2

in its midpoint, call it X. Thus DX = 4PPa = DC.

Therefore C = X, or C is the midpoint of 167T and

P3 > P. If P is in AB, essentially the same

proof applies, for 2DC is still equal to PP1 while

Pi P2 11 AB because the lines are the same.
AOC& A3 ()(1j)

5. Using a rectangular

coordinate system with a as

x-axis and P as origin, let A 'WI)

have coordinates (x, y),

A(x, y)
R
a

A2 (x, -y)
HP

>A3(-x, y).
Ra

A(x, y) HP > A2(-x, -y) >A3(-x, y).

HpRa = RaHp.

6. The composition of four line reflections is a direct

isometry. A glide reflection is an opposite isometry.

A direct isometry cannot equal an opposite isometry.

7. Under all translations and all half-turns.

8. (a) identity transformation

(b) lire reflection

(c) translations

(d) rotations.
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9. (a) The direct isometries are rotations (including

half-turns) and translations. The opposite iso-

metries ere line reflections and glide reflections.

(b) No; a half-turn is an involution, but not an

opposite isometry. It ma: be an opposite isometry,

for example, reflection is a line.

10. Let PQ be the x-axis and b the y-axis. Then (a, 0) may

be assigned to Q,(-a, 0) to P

and (x, y) to any point A.
H

A(x, y) Rb >A1(-x, -y)

A(x, y)---112=>A2(2a-x, -y) Rb >A3(-2a+x, -y)

HpRb = RbHQ.

11. Construct the y-axis through A

If P(x, y) then P--a-->P2

(x, Y) --1.111-->(-xsY)

Slope AP = and Slope AP2 = -

Hence the reflection of AP in the y-axis has a slope

which is opposite (add. inv.) to its slope.

Furthermore, since a half-turn does not alter the

slope of a line

o HB o HA does not alter the slope of AP.

[slope AP2 = - slope AP and slope BP4 = -slope P2B]

Hence AP II BP4.

12. Two figures are congruent if an isometry maps one onto the

other.
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13. A figure has symmetry if it is invariant under an

isometry.

a. An isosceles triangle. (There are many possible

answers).

b. A rectangle. (Other answers are possible).

c. A square. (Circle, any regular polygon).

Suggested Test Items

1. Make a drawing that shows the image of a given AABC under

a. a line reflection in a line through C, not crntaining

interior points of AABC.

b. a half-turn in the midpoint of MS.
--4 --4

c. a rotation about A through AA, from AB to AC.

d. the translation that maps A onto the midpoint of KU.

2. Describe an isometry that, in general has

a. no fixed points

b. has exactly one fixed point



-337-

c. has one fixed point and fixes all lines through

that point.

d. fixes all points in one line and in lines perpend-

icular to that line.

3. Let the diagonal of parallelogram ABCD intersect in E.

If F is in AB and FE intersects 715 in G, show that

CG = FA and mLCGE = mLAFE.

4. Show, that a glide reflection can be regarded as the

composition of two half-turns and a line reflection.

5. Let ABCD be a rectangle. Under what isometrics is the

rectangle invariant? (there are four). Show that the

set of these isometries with composition as operation is a

group by displaying a group table.

6. Let lines a and b intersecting in 0 serve as axes for

line reflections Ra and Rb

Show RaRb in general does not equal RbRa.

7. The center of a circle is P. A line through P intersects

the circle in points A and B. A second line through P

intersects the circle in points C and D. Prove

AAPC a ABPD and mLPCA = mLPDB.

8. (An optional problem).

Let r1 be a motion about point A

and ra a rotation about point B.

Assuming that r1 can be decomposed
Al

into two line reflections whose axes

are XU and AS in that order and r, can be decomposed into
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two line reflections whose axes are AB and BC, in that order,

prove re 0 r is a rotation about C.

Answers for Suggested Test Items

1 a)

c)

A. A'

b)

d)

2. a. A translation or a glide reflection

b. A rotation

c. A half-turn

d. Line reflection,

3. Under the half-turn about E B----->D, F F'.

Since (A,F,B) are collinear, so are (C, F',D). But

both F' and G are in EF and DC. Therefore F' = G.

Since a half-turn is an isometry, CG = FA and mLCGE=m/..AFE.

4. A glide reflection can be regarded as the composition of

a translation and a line reflection. But a translation

can be regarded as the composition of two half-turns

in distinct center. (See Exercise 11, Section 9,8).
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5. The group table is

i R
a Rb

H
E

R
a

Rb

H
E

i R
a Rb

H
E

R
a

i H
E

Rb

Rb H
E

i R
a

H
E Rb

R
a

i

6. This may be done by making a drawing that shows the

image of a point under RaRb is not the same as the image

of the same point under RbRa. But this does not merit

full credit.

A general proof can be based on the Theorem that

the composition of the two line reflections is a rotation

from the first axis to the second. ReverGirz the order

of axes reverses the orientation of the rotation and

hence produces, in general, different images.

7. Using the half-turn in P, and knowing that the radii of

a circle have the same lingth, A --->B, P --->P0 C

Therefore AAPC .--->ABPD and APC ABPD. Since APCA --7>

APDB, mLPCA = mLPDB (isometries preserve angle measure).

8. r = R
AB

0 R
AC

, r
2 = RBC °

RAB.

Therefore 2.2 o ri
RBC RAB RAB ° RAC

But RAB o RAB= i, and RBC
RBC'

Therefore 2.2 o r1 = RBC o RAC. Since BC and AC intersect

in C, ra o r1 is a rotation about C.
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Chapter 10

Length, Area, Volume

Time Estimate for Chapter: 11 days

We consider measure to be a function. There is no

difficulty in defining the domain of this function for the

measurement of segments, nor is there any uoubt that the

range is the set of non-negative real numbers. This clarity

is essentially due to the case of subdividing a given segment

into segments, all of which are similar to it. However the

situation is less clear in measuring regions. This is partly

due to the fact that a region cannot always be subdivided

into regions that are congruent to a unit region, nor even

similar to it. For this reason we prefer to discuss first

the simple case of the areas of rectangular regions, and only

after some basic notions have been discussed do we consider the

area of other regions in Section 10.13, and of circular regions

in Section 10,16. The case for volumes of solids is still less

clear and we restrict ourselves to the volume of rectangular

solids (Sections 10.7).

In constructing a measure function we start with a

domain of the set of figures we are to measure. This can be a

set of easily measurable figures, such as rectangles or polygons

or rectangular solids. These domains can be extended later.

Then we postulate that we can assign a non-negative real number

to each figure such that the same number is assigned to any two

congruent figures (sometimes called the property of invariance),
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,nd -co every figure that is subdivided there is assigned a

number that is the sum of the numbers assigned to the sub-

divisions (the additive property), and finally, the number

assigned to any figure is determined when a measure is assigned

to one figure in the set. It should be noted that different

measures may have different sets of real numbers as their ranges

or co-domain. For example, the range of angle measure is

0: ER and 0 (1) < 180); the range for probaoility measure is

(p:pli and 0 p 1); the range for measures of segments,

areas, and volumes is (77?:77K-R and m ?0). We have also mentioned

the possibility that a measure does not exist, but it is not

important at this level of study.

In Section 10.9 and 10.11 we extend the domain of the

area function from the set of rectangular regions to the set of

triangular and quadrilateral regions. We hint, but do not develop,

the possibility of extending it still further to include polygonal

regions, that is, regions that can be subdivided into triangular

regions. The interesting feature of this extension is that it is

accomplished by deductions. The theorems in these sections give

formulas for finding areas. You should not expect proofs to be

rigorous.

Overhead projection can be used effectively to show the

approximation process in operation. For instance, in Section 10.4,

where segments are being measured, a set of overlays, each with

smaller subdivisions, would show nicely a set of lower and upper

approximations. The same is true in Section 10.5 where rectangular

regions are measured, and in Section 10.13 where the area of a
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map is measured.

References: Kutuzov, B.V. Studies in Mathematics.
Geometry School MatEgmatics Study Group,
Vol. IV, 1960.

Levi, Howard. Foundations of Geometry and
Tri onometry. Englewood Cliffs: Prentice-
ha , 0.

The number of teaching days for this unit may vary

depending on the background of the student. The total teachinE

time alloted should not exceed 12 days.

10.1, 10.2 Introduction and measure on Sets
IJMiirTSTOBTEIFETUTEEr5737;1 day)

These two sections serve as a genera introduction to the

measurement of line segments, planar regions and solids. Section

10.2 develops the general idea of the counting measure of a finite

set and the property of additivity of measures. These are general

principles and yin be used again in a more complete development

of the counting principle.

10.3 Answers

n(A) = 16

n(B) = 9

n( C) = 8

n( =

3 47
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2. n(A n )3) = n((x:x E X and x 1.6 a multiple of 3 and x is a

multiple of 5) )

= n((x:x E x and x is a multiple of 15)) = 3,

n(A n q). n(c) = 8.

n(A n D) = 1.

n(B n = 1.

n(B n D) = n(0) = 0.

n(C n D) = n(0) = 0.

3. n(A B) = n(A) + n(B) - n(A n )3) = 16 + 9 - 3 = 22.

n(A C) = n(A) = 16.

n(A u D) = 19.

n(B u C) = i6.

n(BUD)u D) = 13.

n(C tt D) =

4. n(AxB) = n(A) n(B) = 1609 = 144. n(BxC) = 72.

n(AxC) = 128. n(BxD) = 36.

n(AxD) = 64. n(CxD) = 32.

5. n(AxBxD) = 16°9°4 = 576,

6. n(A, n B n d) = n((x:x E X and x is a multiple of 3 and x is

a multiple of 5 and x is a multiple of 11))

= n(0) = 0,

n(A u B u D) = n(A u B) + n(D) = n[(A B) n D]

22 + 4 - n[(A n D) 0 (Bn D)]

= 22 + 4 - [n(A n D) + n(B n D) n(A n B n D)]

= 22 + 4 - [1 + 0 - 0] = 26 - 1 = 25.

348
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10.4 Lengths of Line Segments (Time estimate = 1/2 - 1 day)

It will be recalled that Chapter 5 contained a rather

complete discussion of the measuring pl'ocess of line segments.

Therefore, it is only necessary to review quickly this procedure

and the various principles of this section.

10.5 Areas of Rectangular Regions (Time estimate including 10.6
7.717uiy)

This section develops the general technique for finding

the measure of a rectangular region. Although students may be

familiar with the formulas A = gw and P = 2A + 2w, they should

understand the process leading to them.

10.6 Answers

1. a. 21 sq. in. b. 21 sq. in. c. 21 sq. in.

d. 13.12 sq. in. e. a sq. in. f. 30 sq. in.

g. 8 sq. in. h. 3.3 sq. in. i. 2 sq. in.

2. A square is a rectangle. Therefore Ksquare = s.s = s2

or K = K = 13, K = sa

3. a. KAD
EH

= 15.6 or 90 b. xpicm = 10.2 = 20

c. KABGH = 5.6 = 30
d' KBCLK

5.4 = 20

e. K = 10.4 = 40

349
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4. a. Two rectangular regions have the same area if they

are congruent

b. The area of a rectangular region is equal to the sum

of the areas of its subdivisions.

c. KBCLK7 2o, KADEH 90,
and 20 = 90.

d. KACFH KCDEFKADEH K (The additive principle)

*** KADEH KCDEF KACFH
(addition property of =)

5. a. = b. KR2 = ab c. KR = ab d. KR = b2
111 4

e. The area of the entire square region is (a+h)2. But by

algebraic principles (a+h)2 = a2 + 2ah + h2, and this is

Kill KiR2 %34. KR4.

PLO

°12 = 60 sq. in.

d. %/1.627:-6-2- = 8 K = 8.6 = 48 sq. in.

e. 4.1-5 = ./6 K = = sq. in.

f. %/25- - 15d = 20 K = 20'15 = 300 sq. in.

7. a. Since ABCD is a rectangle, AACD g ACAB (AACD -.CAB by

a half turn about the midpoint of AC)

KACD KCAB'
by the congruence principle for areas.

b. By the additive principle Kpac- = KACD KCAB 2KACD

KACD = 7 KABCD. PLO

7. a. Since ABCD is a rectangle, AACD g ACAB (AACD -.CAB by

a half turn about the midpoint of AC)

KACD KCAB'
by the congruence principle for areas.

b. By the additive principle Kpac- = KACD KCAB 2KACD
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8. Under the half-turn about the midpoint of PR APRS ARPQ.

Hence A PRS = ARPC and, by the congruence principle, KpRs

KRpQ. By the additive principle K-rQRS KPRS XRPQ
2KPRS.

96 XPTC4 XRTS*

10. The statement is false as indicated by the following counter

example: The rectangular region with dimensions 6 by 2 has

the same area as the rectangular region with dimensions

4 by 3, but they are congruent.

11. (Drawing figures at the board would be helpful to the students)

a. Each side of a square foot is 12 inches long. Its area is

therefore 12'12 square inches.

b. Each side of a square yard is 3 feet long. Its area is

3.3 sq. ft.

c. Each side of a square centimeter is 10 millimeters long.

Its area is 10610 square millimeters.

12. The area of the larger is 4 times the area of the smaller.

XABCD
Kpus = (2/)(2w)

= (2 2)(w) Associativity

13. a.

b .

.

d.

= 4Aw

KpQRs is 4 times the area of K
ABCD

K1 : K2 = .1 141 : 2wi = 1:2

1{,1 : Ka = h :2A1 .3141 = 1:6.

Kl : Ka = : Al = 1:1

1
: = t,w, 3,t1 : 4wi =3:4
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14. a. Let s = length of side of square. By the Pythagorean

property of right triangles s2 + s2 . 122 or 2s2 = 144

4 s2 = K . 72 sq. in.

b. s2 + s2 = (812)2, 2s2 . 64.2 s2 = K = 64 sq. ft.

c. s2 + s2 = (W2)2, 2s2 . 36.2 s2 = K = 36 sq. ft.

15. Let s = length of a side. Then s2+s2 = d2 or s2 = K = ;d2.

10.7 Volumes of Rectangular_Solids (Time estimate = independent
or 1 dayl

Since the method for finding the volume of a rectangular

solid is'analogous to that used in Section 10.5, students should

experience little difficulty with this section. The teacher may

want to assign this section for homework to leave extra time in

class for going over the exercises.

10.8 Exercises (Time estimate = 1 day for exercises 10.6 and
10.8)

1. a. V = 342 = 24 cu. ft. b. V = .4.5 = 50 cu, ft.

c. V =Ni2W-3.2 = 2/6 cu. ft. d. A = 3.1 2.3. 4 = 28.52 cu. ft.

2. The volume of the first box is 2 1 = 3 cu. ft.

The volume of the second box is lir 14 1 = 3 cu. ft.

1
:. The second box is larger by 16 cu. ft.

3. Volume.

4. a. length

b. area

c. volume

5. Each edge of the cubic is e. 4 V = eee =

9
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6. a. Each edge of a cubic foot is 12 inches long. Therefore

its volume is 12
3

1728 cu. in.

b. Each edge of a cubic yard is 3 feet long. The volume

of a cubic yard is 33

c. The number of cubic decimeters in a cubic meter is 10
3

1000.

d. There are 1760 yards in one mile. Therefore there are

17603 cubic yards in a cubic mile. To approximate 17603

we can take 1700.1700'1800 or 289'18'103 or 300'18'103

which is 54.10121 :. 17603 is about54.103.

7. (a) V = 3.2.5 = 30 (b) V = 4.3-5 = 60

10.9 Area of Tri ular Re ions (Time estimate including 10.10
= y

Students should be challenged to find the formula for

the area of a triangular region. After the informal discussion,

the derivation of Formula 2 can be done in more detail.

10.10 Exercises (Drawings will be helpful in many of these
exercises)

1. a. K = -8.12 = 48 sq. in. b. K = = 48 sq. in.

1
c. K = 8.12 243 sq. in. d. K = '3-4 = 6 sq. ft.

e. K = -12.25 = 150 sq. in.
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25 + cb2 = 169

cb2 = 144

cb = 12 cm,

Then K * 5 12.
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= 30 sq. cm.

2. The diagram in the book is inaccurate (notice origin of

altitude AU); therefore, it would be wise to have etudents

ignore the direction to measure the figure in text and have

them draw one of their own. The exercise should lead to the

conclusion that the area of the triangle is the same

regardless of which altitude and base is selected.

3. By the Pythagorean property of Right Triangles we have:

a2 + b2 = c2

102 + b2 = 262

100 + b2 = 676

b2 = 576

b = 24

Then K = ir 24 10 = 120 sq. in.

4. By the Pythagorean property of Right Triangles we have:

e,2 4 b2 = c2

a2 + 12 =h2 SPE

a2 = 112-A2 Field Theorem

a2 = NAP Length of a

Then K = 7 ab

K = A( ./TF=-72) SPE (where A is the altitude

and ./117772 is the base.
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5. By the Pythagorean property 62 + 82 = ca

36 + 64 = ea

100 = c2

10 = c

Let x = length of the altitude to the hypotenuse, then

.K = 2 x 10 and K= 6 8

Then x 0 10 = 6 8

5x = 24

x = 4.8 or 4 4/5

6. KABC
20.40 = 400: KADC = 30.40 = 600. KABCD

400 + 600 = 1,000.

7. Let x be the length of the altitude to the base

102 = 42 + x2, x =,/8"4, K = i 44-8 = 4i64 or 8J''1

8. a. Let ABC be the triangle and KE an altitude.

(AD) 2 + 62 = 122, AD = or 613

(regardless of which NU is selected.)

b. K= 12 61 =

See exercise 2 above, and
by transitive property.

9. Let ABC be the triangle and 0 an altitude. Then

AD2 + 2 = S2

fie + 4 = s

AD2 = s2-71.

AD2 =

AD =-2.
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Then KABC ab
ABC e

KABC s.r3
s

K s2V-3 s2 rABC 4-- or 3v

10.11 Areas of Parallelograms and Trapezoidal Regions
(Time estimate including 10.12 = days)

As in section 10.9, students will enjoy trying to

find (on their own) formulas for the areas of parallelograms

and trapezoidal regions. The teacher should ellicit, from

the class, the various steps leading to the derivation of

the formulas.

10.12 Answers to Exercises

1 . a. K = 7.10 = 70 b . K = 9'7 = 63 c . K = 4.10 = 410

2. a. K = 5 (8+10) = 45 b. K = 6 (6+12) = 54

1
C K = 7 7(10 + 20) = 105

3. a. Trapezoid. K = 5(8+5) =

b. Parallelogram. K = 8 ' 6 = 118

c . Square. S = 3[2 K = (3i-2)2 = 18

d. Trapezoid. K 5 (8+6) = 35

e. Trapezoid. K = .12, 5 (8+4) = 30

f. Trapezoid. K = 8 (4+7) = 44
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4. a. K = 8.10 = 80. Cost =(80)( .15)= $12.00

b. K = '2.10(10+14) = 120. Cost = 120..15 = $18.00

1 e
C. K = 7 0.5 = 15 Cost = 15.15 = $2.25

d. b = 16, K = 15.16 = 240. Cost 240.15 = $36.00

e. a =Ni20.'-68 =%)115.4. Cost = .15ing (about $2.86)

f. X = (10M2 = 100 Cost = .15 x 100 = $15.00

5. a. 4:1 b. 9:1 c. 4:9 d. k2:1

6 a. 4:1 b. 9:1 c, 4:25 d. k2:1

10.13 Areas of other Regions (Independent assignment)

Since this section is interesting and not difficult,

it should be assigned independently. If students have

questions they can be answered when going over homework

exercises.

10.14 Circumference of a Circle and r
(Time estimate including 10.15 = 1 day)

Before doing this section, the teacher may want to

use a discovery approach as outlined below:

Prior to beginning the lesson, the teacher should

have each student bring a tin can and some string to class.

The teacher can begin the lesson by introducing or reviewing

the definitions of circle, radius, diameter and circumference.

Using one end of the tin can as a model of a circle, the

students should find the circumference by pulling the string

tightly around the can and then measuring the length of the

*i1 V I
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string. After measuring the diameter of the circle as best

he can, the student should compute the ratio § . On the

board, the teacher should have prepared a chart with columns

Pntitled c, d and . After having several pupils list their

results on the board it will become clear that a is about

the same in each case. At this point, the teacher may wish

to include some historical reference by mentioning that the

ancient Greeks also noticed this constant relationship

between the circumference and diameter of a circle.

The teacher can now return to section 10.14 and

complete the lesson by explaining the procedure outlined in

the text. (It should be pointed out that paragraph 2 on

p. 219 will have more meaning after this intuitive approach.)

10.15 Answers to Exercises

1. a. 20r b. 16r c. 27r d. r e. 213 r

2. a. 38 in. b. 75 yd. c. 628 m d. 11 cm

3. a. 44 in. b. 22 ft. c. 8800 in.d. 176 m

4. 2:1

5. a. 127r in. b. 50r ft. c. r yd.d. .1r ft.

6. a. lOir in. b. 25r ft. c. d r.

7. Side of square = 1012, perimeter = 0012, about 56.56.

C = 2.r .10 = 20 r, about 62.84

62.84 - 56.56 = 6.28 or 6 in.

8. Let d = diameter' s length. e = 3a+52, d =/.34 C = 7reSZT .

Pr7q
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9. a. 12 b. --33- c.
12

d. k

10. a. 18 b. 4 c.
18lr d. 2k

10.16 Areas of Circular Re ions
1TiMe estimate nc u ng 0.17 = 1 day)

As in section 10.14, V20 teacher may want to give a more

intuitive approach to the area of a circle before considering

the approximation technique of this section. This can be done

by having the students cut a circular region into 6 congruent

regions as in figuxe 1. The students should then rearrange the

regions as in figure 2.

Figure 1 Figure 2

It will be noticed that figure 2 is a very rough

approximation of a parallelogram. Indeed, if we cut the

circle into a very large number of congruent regions, we

would have a closer approximation to a parallelogram. Thus,

the area of the circle is approaching the area of a parallelogram.

If the circumference = c, and the radius = r, the base

of the parallelogram = and the height = r. Therefore

K = lorql

27r r = 7r2

359
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10.17 Answers to Exercises

1. a. 100v b. 64r c. 7 d. e. 3

2. a. 113.04 b. 200.96 c. 314 d. 15.70

3. a. 154 sq.in. b.
38 1/2 sq. ft. or
t38.5 sq. ft. c. 61600 sq.yd. d. 22 sq.yd.

4. a. r b. T c. 41. d. 3 7

5. a. 5 b. 8 c.
0

d. IV or 207-

6. a. 7r2 = 257r implies r = 5. = 107

b. r = 2, C = 47

c . r = 1, 0 = 27

d, r= C = 7

7 . a. 271. = 167 implies r = 8. K= 647

b. r = 13, K = 1697

c. r = 4, K = 16r

d. r = K = 7(4)2 . .1-7A

8. a. (7 52) = 7 or 12.57 b. (742) = 8r

1 I aN
c. 7 050-) = 1250r d. (732) = r

9. a. Let the respective radii be 2r and r.

CI: C=. 47r : 27r = 2:1

b. KL: Ks = 47r2: 72,2 = 4:1

10. a. 3:1, 9:1 b 3:2, 9:4

c. 4:3, 16:9 d. 5:1, 25:1

The teacher should generalize at this point that

cl :c = :re and Ke. :Ke2 = )2 )2
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11. a. AD = 1012,
KABCD

(1012)2 = 200.

b. K Circle = 100T

c. This region has an area which is one-fourth of the

difference between 100r and 200. It is 25T - 50.

d. This region has an area which is three-fourths of

the difference between 100r and 200. It is 75r - 150.

10.19 Review Exercises

1. a. The sum of the lengths of the subdivisions of a segment

is equal to the length of the segment.

b. The sum of the areas of the subdivisions of a region

(if they have areas) is the area of the region.

c. The sum of the volumes of the subdivisions of a solid

(if they have volumes is the volume of the solid.

2. Let s = length of a side s2 + s2 = 82, si= 32

s = = 41372-= 16

Alternate solution. The area of the triangular region is

one half the area of the square region whose diagonal

measures 8 in. K 82 = 32. KA = 3 2
-square 16.

3.. a. C = 16r;K = 64r b. C = lor, K = 25r

c. C = 24r, K = 144r

4. rr2 = 100r. r = 10. C = 20r

5. The length of one side is 612. Area = 72

6. Let Obe the median. Triangles ADB and ADC have same length

bases in 1115 and Mr; and a common, altitude from A to BC.

361
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7. Using the result of Exercise 9.

a. KADB: KADC = 1:1

8.
1 27a. Trapezoid K = 2(7 +2) =

b. Parallelogram K = 6.5 = 30.

15C. Two triangles with common base in x-axis K = 5.3 =
2

d. Two triangles, with common base whose endpoints are

1 63(-3, 0) and (4, 0). K 1 4.7 5.7

9. V = 3.6.2 = 36 cu. in.

10. V = 3.5.6 = 90.

Suggested Chapter Test Items

1. In a rectangular coordinate system consider the following

set of points with their coordinates:

A(-2,0), B(4,0), C(6,3), D(3,3), E(0,3)

Find a. KAEB
b. KABCE c' KABDE d' KBCE

2. The perimeter of a square is 24. Find the area of its

region.

3. In surveying field ABCD, an east-west line was laid out

through B, as shown. Then perpendicular to this line,

lines from A,D,C intersected it in At , Di , Cl. Find

KABCD if AA1 =.12 yds., DD1 = 20 yds., A1B = 6 yds.,

BDI=2 yds.., rAci = 8 yds., CC' = 9 yds.

(See figure next page.)

3621
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4. Let ABCD be a trapezoid

AB 11 CD, and AT n nu = (0).

Prove: a. KADC
KBDC

b. KAOD KBOC

5. Find the radius of a circle whose circumference measure

is equal to the measure of its region.

6. The area of a semicircular region is 18r. Find the

radius of the related circle.

7. The diameter of a wheel is 21 inches. How many revolu-

tions does it make covering 660 feet? (Use --- for r).

8. In the figure points A,B,C,D are on the circle whose

radius is 10. ABCD is

a square. (Assume BD

is a diameter). Find:

a. K
circle

b. K
square

c. The area of the region bounded by Tr and the part

of the circle that is on the opposite side of

DC as A.
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Answers for Chapter Test Items

1. a. K
AEB e

= .
1.3.6 = 9 sq. units.

b. KA
BCE

= 6°3 = 18 sq. units.

1

c' KABDE
+3)

27= y or 13y sq. units.

d. KBCE '3.6 = 9 sq. units.

2. Each side has measure 6. K = 62 = 36 sq. units.

3.

KABCD KAA'ED, KDD,C,C KABA' KBCC'

= ;0.2)(12+20) + 2(8)(20+9) + 2(12)(6) - 149)(26)

= 192 +116 +36 - 117

= 227 sq. yds.

4. a. The altitude from A to tr. = the altitude from B to 1r

and DC = DC %KADC KBDC

b. KADC KAOD KDOC KBDC KBOC KDOC

by (a) KAOD KDOC KBOC KDOC

KAOD KBOC
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5. Let r be radius. 2rr = rr2.

Since rp 0, r = 2.

= 36,r, rr2 = 36r, r = 6.6.
Kcircle

7. The circumference is C = rd

C = 722 21

C = 66 This is the distance

covered in one revolution.

0The required number of revolution is 766-6- = 10 revolutions.

8
a) Kcircle = Tr°

. 100r

b) = 10if

4 KABCD = 200 sq. units.

c) K
region bounded by ru 40.00r-200) = 25r-50 sq. units.

K
region side of DC = (100r-200) = 75r-150 sq. units.
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APPENDIX A

Mass Points

In preceding chapters we have used induction and de-

duction as the pedagogic situation seemed to dictate. Where

deduction was simple we preferred it to induction or exper-

imentation. It was one of our purposes in those chapters to

give students many experiences with deductions. in this

chapter we want to take our first step in the direction of

formal deductions. But that step should not be a long one

lest we overwhelm students with the many difficulties inherent

in the process. The important objective is to make students

aware of deductive proofs; that they appreciate the place of

postulates of primitive statement in such proofs; that they

learn to be critical in judging validity of proofs; that

they become adept in writing simple proofs about mass points;

and finally that they will come to enjoy the pleasures of

the intellect in this activity.

The topic of mass points is related to centers of gravity

and centroids. This might be made clear to students by per-

forming experiments. The first of these experiments could

easily be in connection with the definition of addition of

mass points, as indicated in the see-saw diagram.

In Section 13.2 when Theorem 1 has been learned a second

experiment can be performed to show that a cardboard triangle

can be balanced on a pin at the point where the medians meet,
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that is, at the centroid. If you perform this experiment

be sure to use a stiff cardboard that is homogeneous (as

mortar). In setting the triangle to rest on the point of the

pin, the pin should pierce the cardboard ever so slightly,

to prevent slipping. If the experiment were performed under

ideal conditions there should be no slipping. But no card-

board is ideally homogeneous, nor is the location of the

centroid perfect. So cheat a little but be frank with your

students. In this experiment you are considering the case

of lA + 1B+ 1C for which the same weight is set at each vertex.

This is equivalent to using a homogeneous cardboard. The

case of 2A + 1B + 1C is more difficult. However;, it can be

approximated. Connect A, B, 6

and C with the two light

(balsa) strips of wood, or

two metal strips (from a

coat hanger?), as shown at

the right. At A,B,C suspend equal weights and support the

system at E, such that DE:EA = 3:1. (Shades of mobiles). The

weights at A should be a little more than twice the weight of

the frame on one side of D. If this experiment is carried out,

even though it is not as successful as you might like, it

will help clarify the meaning of mass points and their impor-

tance in the engineering problems of equilibrium.

You will have to face the question of what degree of

formality you will require in your students' proofs. Strictly

E I

2r,'")
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speaking, the question is not one of degree, since a proof

is either formal or it is not. The question is one of format

or style. In one style, commonly called the two column form,

a reason is expected for each statement in the proof. This

is the goal which you should set for your students and when

they take their chapter test they should be able to do this.

(See Problem 3 in the Suggested Items for Chapter Test).

However at the outset, when a student is giving a proof

orally he should not be interrupted, nor corrected, until he

has completed his effort. It is likely that students will

omit some reasons, particularly the obvious ones. They have

this in common with mathematicians and should not be too

severly criticized for this kind of omission. However, in

order that the nature of deductive proof be clear, it will

eventually be necessary to require all reasons. This require-

ment, however, should be imposed slowly, and only when students

are ready for it.

A.3 Answers

1. a. 5A

b. lA

+ 1B

c. 2C 2C + 1D

1B

lA + 5B 5B

1D



d. 1C

e. 1E
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1C +I2D 2D

1E +1F 1F

f. 2G 4H + 2G 4H
1---

g. 3G 3G +12H 2H
(E 11

5
>< 1 >13-

h. 2K 2K + 4L 4L

3 1

i. 1K 1K + 2L 2L

J. 1.K

k. 3A

4

1. 2C

4 -6
in. 5E

4--42
n. 2G

11 K+ 1L 1L

3A + 4B 4B

2C + 3D 3D

5E + 2F 2F

0. 5K

4
2G + 4H

I

5K + 4L

4H

3

369
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2. a. The center of mass is nearer to B.

b. The center of mass is nearer to A.

c. The center of mass is nearer the point with the

greater mass.

3. a. 2:3 b. 6:1 c. 1:2 d. 1:1

4. a. 3+ x= 4 x=1 AB: BX = 1:3 A B
x>

b. 4 + x = 6 ==>x=2 AB: BX = 1: 2 A B X)

c. x + 4= 6 =>x=2 AB: BX = 1: 2 4A B 2X

d. 1+ x= 3 ---7->x=2 AB: BX = 2: 1 A B X

e. 2 + x = 3 >x=1 AB: Bx = 1: 2 A B X>

f. x- 9 =12 >x=3 AB: Bx = 1:3 A B X>

3. a. b = 12, c = 24 b. b = 6, c = 18

c. b = 24, c =36 d. b = 9, c = 21

6. a. 3 b. 6

7. Let the weights attached to A and B be a and b

(a) AC: CB = 2:3 = b: a and a + b = 5

then 3b = 2a, a= 3, b= 2

(b ) AC: CB = 2:3 = b: a and a + b = 7

then 3b = 2a, a =
21

b =
14

( c ) AC: CB = 3: 4 = b: a and a + b = 10

then 4b = 3a, solving a = 57 , b = 4
(d) AC: CB = x:y = b: a and a + b = 5

then ax = by

Solving a = 5 - b so 5x - bx = by
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bx + by = 5x and b = 5x
x+y

and a = 217-+y
x

(e) AC:CB = x:y = b:a and a + b = z

then ax = by

Solving: a = z - b so xz - xb = by

and xz = xb + by and b = xz
x+y

and a = x+y

8. (a-d) 3D + 3C 2B + 3C lA + 2B

lA + 5F

9.

1 2 3 5 6.
C E F

(e) Yes

(f) Each triplet resulted in the center E (or G)

and weight 6.

SD

3x 2x
2A 3B

m

y

n
5G

5z 3z --->

w-> 8F

See diagram above.

Let the distance between A and B be m

Let the distance between B and C be n

(a) Adding 2A and 3B we obtain point D with weight

32 1
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5 and the distances AD and DB can be represented

as 3x and 2X and we have that 5x = m.

(b) Adding 5D and 5C we obtain point E with weight 10.

The distance between D and E and E and C must be

equal and we can call them y each.

(c) Adding 3B and 5C we obtain point F with weight 8

and the distances BF and FC can be represented

as 5Z and 3Z, and we have 8Z = n.

(d) Adding 2A and 8F we obtain point G with weight 10

and the distances AG and GF can be represented by

4w and W.

(e) We have to show that the distance between A and

E is the same as the distance between A and G

(or that the distance between E and C is the same

as the distance between G and C). This means we

have to prove that either 3x + y = 4w

or W + 3Z =y

Now we have from the diagram

5x + 8z m + n (1)

5W + 3z = m + n (2)

3x + 2y = m + n (3)

From (1) and (3) we get

5x + 8z = 3x + 2y

or 2x + 8z = 2y

or x + 4z = y (4)
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From (1) and (2) we get

5x + 8z = 5W + 3z

or 5x + 5z = 5W

or x + z w

If we combine (4) and (5)

x + 4z =y

x + z = w

we get 3z = y - w

or 3z + W = y

which proves that EU = UU and therefore that points

E and G are the same.

(f) This shows that

(2A + BC) + 5C = 2A + (3B + 5C).

(5)

A.5

2. a. Commutation 2B + 1C = 1C + 2B

b. The Commutation in a and Assonciation.

c. 2B + 3A + 1C = (2B + 3A) + 1C (Association)

= (3A + 2B) + 1C Commutation

= 3A + 2b + 1C Association

3. aA + bB + cC = aA + cC + bB

= bB + aA + cC

= bB + cC + aA

= cC + aA + bB

= cC + bB + aA

373
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+ 16 2C

1 13

1. As the proof is written it can apply equally well

to any triangle; therefore to all triangles.

2. Failure to carry outthe experiment successfully may

be due to any of the following or combinations.

(a) Line segments are not drawn straight.

(b) Line segments are drawn with broad strokes

and then the center of mass may not be collinear

with related mass points.

(c) The ruler was used inaccurately in a measure-

ment.

(d) The computation of the ratio of distances to

.mass points is inaccurate.

3. If medians Ms BE, and -.'P meet at G, and AD = 15, BE = 12,

and EF = 18, then AG = 10, GD = 5, BG = 8, GE = 4,

EG = 12, GF = 6.

4. Using the notation in Exercise 3, if AD = 12, BE = 13,

EF = 14, then AG = 8 GD = 4 , BG = 40 GE = 41, CG =

GF = 4.

31(4
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5. If the hint is accepted the following solution can be

given 2B + 10 = 3E, 4A + 3E = 7G therefore AG: GE = 3:4

4A + 2B = 6D, 1C + 6D = 7G therefore CG:GD = 1:6

6. Since F is. in BG and CA it must be the center of masses

at C and A. Hence 4A + 1C -1F and AF:FC = 1:4. Also

2B + 5F = 7G and BG:GF = 5:2.

7. To solve this problem we

use two sets of weights,
1C

A.9

one to find Kl:LB, the

other to find KM: Mb. To IA

find KL:LB use mass points

1A, 2C, 4B. (We are interested in KB n AE = L). Then

lA + 2C = 3K and 3K + 4B = 7L or KL:LB = 4:3. To find

KM:MB, use mass points 2A, 113J4C (we are interested in

KB n CD = M). Then 2A + 4c = 6K and 6K + 1B = 7M or

KM:MB = 1:6. We may thus think of KB subdivided into

7 segments of the same length. Of these 7, 3 are in

BL, 3 are in LM and one is in MK. Therefore B1 = LM = 3MK.

3. Using the hint we use mass points 2A, LB, 3C, and 1D.

(2A + 1B) +(20 + 1D) = 3E + 3G = 6H where H is the mid-

point of EG. (1D + 2A) + (1B + 2C) = 3H + 3F = 6K

where K is the midpoint .of HF. By P3 and 1,4, 6H = 6K.

That is EG and HF bisect each other.

4. Assign weight 3 to P and 3 to R; 1 to S and 1 to Q. Then

375
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(3P + 1S) + (3R + 1Q) = 4A + 4c = 8E where E is the mid-

point of AC. Also (1S + 3R) + (1Q + 3P) = 4B + 4D = 8F

where F is the midpoint of BD. But 8E = 8F. Therefore

AC and BD bisect each other.

5. Assign weight 2 to C and 2 to A; 1 to B and 2 to D. Then

(2A + 1B) + (2C + 2D) = 3P + 4R = 7E. Also (1B + 2C)

+ (2D + 2A) = 3Q + 4S = 7G. But 2A + 1B + 2C + 2D = 7F =7G.

Therefore F = G. Thus F is on both Pr and QS and it

follows that F = E. 4R + 3P = 7E RE: EP = 3:4

4s + 3Q = 7E SE:EG = 3:4.

A.11 Answers to Exercises

1. (a)
(4-ta)A

0

if
4111

(4B + 4A) + (2A + 2C)

= 8D 4E

or 4B + 2C + 6A

= 6F + 6A

12H. = 12K.

Therefore H = K = G.

Hence, FG: GA = 1:1, and DG: GE = 1:2.

(b - e) Exercises should be deleted as they are

confusing and irrelevant.

2. If 4 is assigned to B and 5 to C, then 4 + 5 should be

assigned to A in order that D be the center of mass of

masses at B and A, and that E be the center of mass of

masses at C and A. Thus 4B + 4A = 8D and 5C + 5A = 10E.

31/6
kr;
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The center of all masses is then 8D + 10E = 18G and

DG: GE = 5:4. Also 4B + 5C = 9F + 9A =18G.

Therefore G is the midpoint of AF.

3. The segment that joins two sides of a triangle at the

midpoints bisects any segment joining any point in the

third side to the opposite vertex.

4. The segment that joins the trisection point nearer A,

intersects any segment joining any point in the third

side to A, in the trisection point nearer A.

5. a. Assign weights 1 to B, 3 to C and 12 to A.

Then, 1B+ 3C = 4D and 3C + 12A = 15E.

Hence, 4D + 12A = 16G and 15E + 1B = 16G.

and 16G = xF + 3c = x = 13.

Since 1B + 12A = 13F, I
ABT = .

AF BD CE 1 3 4
b. Ts nu Er TT T =1

1.7A

6. Assign 2 to B, 3 to C and

5 to A. Then, 2B + 3C +

5A =10A, and 10A =

3C + xFx = 7. Thus,

AF 2

AF BD CE 2 3 5 1

TS 157 TX 5 -1-

7. If we assign weights to B, and to C then, to A we should

acassign -, in order that D and E be centers of masses of

related mass points. We can simplify computation by
377
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multiplying each weight by

d. Thus, we assign bd to

1:31' ad to C, and ac to A.

This makes F the center of

masses at A and B and acA

+ bdB = (ac + bd)F and

AF
Then,

F BD CEbd
en2 IT DU Ific =

bd a
ac

ZOWIMEMPNIninenVERTMET

et A

= .

8. Using results in Exercise 7 and the equations bdB + adC

(bc + ad) D. Thus, GD: GA = ac : bd + ad.

Or GD: AD = ac : bd + ad + ac

GDThat is
A15 bd + ad

FIC

+ ac

By similar arguments bd
bd + ad + ac

andsGF ad
bd + ad + ac

GD , GE , GF ac + bd + ad
AD' mr- bd + ad + ac

Hence, - 1.

A.14 Answers - Review Exercises

1. a.

b.

A 24: + 1B
f--_--_3

A lA 4- 2B

c. A 2a +2C C

12.
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d. A
1A +1B+1C

e. lA (A+2C) 1A+2C+2B

1 12 3
2

f. 2A 2A+4B
5

1 15- 2

2A +4B+3 C

2 . a. x = 1 Al Be
2 1 3B X 2

b. x = 1 A' t)

2
c. x = 2 Al X

4
/1X

3

21
d. x = 2 3/A 5113 2X

3.a. 8

b. 4

c. 16

1
d. 5T

4.a. 1 to C and 4 to A

b. 1B + 1C = 2D,

4A + 2D = 6G.

Therefore AG: GD = 1:2

BG: GE = 5:1

c. 4A + 1B = 5F.

Therefore AF:FB = 1: 4.

5. If we assign 1 to B, 2 to C

then, G is the center of

masses A, B and C. If we

V-A
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assign first 2 to A and then 1 to B by the first assign-

ment D is the center of masses at A and B, and by the

second assignment to A, F is the center of masses at

A and C.

3A + 1B + 2C = (2A 1) + (1A + 2C) = 3D + 3F. Also

3A + 1B + 2C = 3A + (1B + 2C) = 3A + 3E. The center

of masses at A, B, C is DP n AE = G. Thus, DG: DF = 1:1

and AG: GE = 1:1. Therefore DF and AE bisect each other.

6. If we assign weights 1 to A,

2 to B, 4 to c and 8 to D D

then, E, F, G, H are centers 14

of masses at the endpoints

of the sides in which each

lies. Thus, lA + 2B = 3E,

2B + 4c 6F, 4C + 8D = 12G, A

and 8D + lA = 9H.
3

Now, lA + 2B + 4c + 8D = (1A + 2B) + (4c + 8D) = 3E + 12G

or lA + 2B + 4c + 8D (2B + 4c) + (8D + 1A) = 6F + 9H.

In either case the center of mass of the four masses

at A=B=C=D is 15K, where K = HP n GE. Thus, 3E + 12G =

15K and EK:KG = 4:1. Also, 6F + 9H = 15K and FK:KH

= 3:2.

Suggested Items for Chapter Test- Chapter 13

1. Draw ! making it 4 inches long. On this segment locate

the center of the masses for each sum which follows.
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a. 3A + 1B

b. lA + 3B

c. lA + 3B + 4c

Call the center C.

Call the center D.

Call it F.

2. For each of the following equations solve for x and

compute AB: BX.

a. 3A + xX = 4B

b. xX + 4B = 7B

3. In A ABC, points D and E

in AB and AC respectively,

BD: DA = 2: 1, and AE: EC = 2: 1.

Let BE t1 CD = G. Give a reason

for each of the following

statements.

a. 1B + 2A = 3D.

b. 2A + 4c = 6E.

c. (1B + 2A) + 4c = 1B +(2A + 4c) .

d. 3D + 4c = 1B + 6E.

e. 3D 4- 4c = 7G and 1B + 6E = 7G.

f . DG: GC = 4: 3 and BG: GE = 6: 1.

4. a. In A ABC, D is in AB and

E is in AC. BD: DA = 2: 1.

CE: EA = 2: 1. Let BE fl CD

= G. Prove: BG: GE = 3: 1

and CG: GD = 3: 1

b. Suppose in A ABC, BD: DA = 3: 1 and CE: EA = 3: 1.

Compute BG: GE and CG: GD.

:121
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5. In quadrilateral ABCD, E, F, G, H are in AB, BC, CD, DA

respectively. E and H are trisection points nearer A

and F and G are trisection points nearer C.

Prove EFGH is a parallelggram.

Answers for Chapter Test Items

Chapter 13

1. 3A + 1B IA + 3B
A

2. a. x = 1, AB:BX = 1:3

b. x = 3, AB:BX =3:4

3. a. Definition of addition of mass points i3 satisfied

for 1 + 2 = 3 and BD: DA = 2:1.

b. Definition of addition of mass points is satisfied

for 2 +4 =6 and AE: EC = 2:1.

c. Association (P3).

d. Substitution Principle, using (a) and (b) in (c).

e. The center of masses at A, B, C must be both on

BE and CD, hence - it must be G. (Also 3 + 4 =

1 + 6 = 7).

f. Definition of addition of mass points is satisfied.

4. a. We assign weights 1 to B, 1 to C and (2 + 2) to A.

(1) 1B + 2A = 3D Definition of addition of

mass points.

(2) 1C + 2A = 3E Same as reason (1).

(3) (1B + 2A) + 1C = 1B + (2A + IC)
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(4) 3D + 1C = 1B + 3E

(5) 3D + 1C = 4G =

1B + 3E

(6) le + 3D = 4G

(7) CG:GD = 3:1 and

BG: GE = 3: 1

Subsitution Principle

(1), (2) in (3).

The center of masses at

A, B, C is on BE and CD,

that is, at G, and

definition of addition.

Commutation (P2).

Definition of addition

of mass points.

b. BG: GE = CG: GA = 1

(If BF: DA = CE: DA = n: 1, then BG: GE = CG: ED = n+1: 1).

5. Assign weights 2 to A, 2 to C, 1 to B, 1 to D.

(I) (2A + 1B) + (2C + 1D) = (1B + 2C) + (1D + 2A):

P
2
+ P

3'

(2) 2A + 1B = 3E, 2C + 1D = 3G, 1B + 2C = 3F,

1D + 2A = 3H: Definition of addition

of mass points.

(3) 3E + 3G = 3F + 3H: Subsitution Principle.

(4) 3E + 3G = 6K = 3F + 3H: Statement (1) .

(5) EK:KG = 1:1, FK:KH = 1:1 Definition of addition

of mass points.

(6) EFGH is a parallelogram: If the diagonals of a

quadrilateral bisect

each other, it is a

parallelogram.


